These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 25109901)

  • 1. Model validation of untethered, ultrasonic neural dust motes for cortical recording.
    Seo D; Carmena JM; Rabaey JM; Maharbiz MM; Alon E
    J Neurosci Methods; 2015 Apr; 244():114-22. PubMed ID: 25109901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent advances in neural dust: towards a neural interface platform.
    Neely RM; Piech DK; Santacruz SR; Maharbiz MM; Carmena JM
    Curr Opin Neurobiol; 2018 Jun; 50():64-71. PubMed ID: 29331738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rodent wearable ultrasound system for wireless neural recording.
    Piech DK; Kay JE; Boser BE; Maharbiz MM
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():221-225. PubMed ID: 29059850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wireless Recording in the Peripheral Nervous System with Ultrasonic Neural Dust.
    Seo D; Neely RM; Shen K; Singhal U; Alon E; Rabaey JM; Carmena JM; Maharbiz MM
    Neuron; 2016 Aug; 91(3):529-39. PubMed ID: 27497221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beamforming approaches for untethered, ultrasonic neural dust motes for cortical recording: a simulation study.
    Bertrand A; Seo D; Maksimovic F; Carmena JM; Maharbiz MM; Alon E; Rabaey JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2625-8. PubMed ID: 25570529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wireless gigabit data telemetry for large-scale neural recording.
    Kuan YC; Lo YK; Kim Y; Chang MC; Liu W
    IEEE J Biomed Health Inform; 2015 May; 19(3):949-57. PubMed ID: 25823050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A method for compression of intra-cortically-recorded neural signals dedicated to implantable brain-machine interfaces.
    Shaeri MA; Sodagar AM
    IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):485-97. PubMed ID: 25222949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inductive and ultrasonic multi-tier interface for low-power, deeply implantable medical devices.
    Sanni A; Vilches A; Toumazou C
    IEEE Trans Biomed Circuits Syst; 2012 Aug; 6(4):297-308. PubMed ID: 23853174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. End-to-End Design of Efficient Ultrasonic Power Links for Scaling Towards Submillimeter Implantable Receivers.
    Chang TC; Weber MJ; Charthad J; Baltsavias S; Arbabian A
    IEEE Trans Biomed Circuits Syst; 2018 Oct; 12(5):1100-1111. PubMed ID: 30235147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An implantable wireless neural interface for recording cortical circuit dynamics in moving primates.
    Borton DA; Yin M; Aceros J; Nurmikko A
    J Neural Eng; 2013 Apr; 10(2):026010. PubMed ID: 23428937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A low-power communication scheme for wireless, 1000 channel brain-machine interfaces.
    Costello JT; Nason-Tomaszewski SR; An H; Lee J; Mender MJ; Temmar H; Wallace DM; Lim J; Willsey MS; Patil PG; Jang T; Phillips JD; Kim HS; Blaauw D; Chestek CA
    J Neural Eng; 2022 Jun; 19(3):. PubMed ID: 35613546
    [No Abstract]   [Full Text] [Related]  

  • 12. Electromagnetic power absorption and temperature changes due to brain machine interface operation.
    Ibrahim TS; Abraham D; Rennaker RL
    Ann Biomed Eng; 2007 May; 35(5):825-34. PubMed ID: 17334681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Minimizing data transfer with sustained performance in wireless brain-machine interfaces.
    Thorbergsson PT; Garwicz M; Schouenborg J; Johansson AJ
    J Neural Eng; 2012 Jun; 9(3):036005. PubMed ID: 22523005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Implantable Wireless Neural Interface System for Simultaneous Recording and Stimulation of Peripheral Nerve with a Single Cuff Electrode.
    Shon A; Chu JU; Jung J; Kim H; Youn I
    Sensors (Basel); 2017 Dec; 18(1):. PubMed ID: 29267230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies in RF power communication, SAR, and temperature elevation in wireless implantable neural interfaces.
    Zhao Y; Tang L; Rennaker R; Hutchens C; Ibrahim TS
    PLoS One; 2013; 8(11):e77759. PubMed ID: 24223123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward a distributed free-floating wireless implantable neural recording system.
    Pyungwoo Yeon ; Xingyuan Tong ; Byunghun Lee ; Mirbozorgi A; Ash B; Eckhardt H; Ghovanloo M
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4495-4498. PubMed ID: 28269276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of Ceramic Packages for Ultrasonically Coupled Implantable Medical Devices.
    Shen K; Maharbiz MM
    IEEE Trans Biomed Eng; 2020 Aug; 67(8):2230-2240. PubMed ID: 31825858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Distributed Wireless Network of Implantable Sub-mm Cortical Microstimulators for Brain-Computer Interfaces.
    Laiwalla F; Lee J; Lee AH; Mok E; Leung V; Shellhammer S; Song YK; Larson L; Nurmikko A
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6876-6879. PubMed ID: 31947420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A 25 Mbps, 12.4 pJ/b DQPSK Backscatter Data Uplink for the NeuroDisc Brain-Computer Interface.
    Rosenthal J; Sharma A; Kampianakis E; Reynolds MS
    IEEE Trans Biomed Circuits Syst; 2019 Oct; 13(5):858-867. PubMed ID: 31478872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication and Microassembly of a mm-Sized Floating Probe for a Distributed Wireless Neural Interface.
    Yeon P; Mirbozorgi SA; Ash B; Eckhardt H; Ghovanloo M
    Micromachines (Basel); 2016 Sep; 7(9):. PubMed ID: 30404327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.