These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 25109987)

  • 1. Application of redox proteomics to skeletal muscle aging and exercise.
    McDonagh B; Sakellariou GK; Jackson MJ
    Biochem Soc Trans; 2014 Aug; 42(4):965-70. PubMed ID: 25109987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox responses are preserved across muscle fibres with differential susceptibility to aging.
    Smith NT; Soriano-Arroquia A; Goljanek-Whysall K; Jackson MJ; McDonagh B
    J Proteomics; 2018 Apr; 177():112-123. PubMed ID: 29438851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential cysteine labeling and global label-free proteomics reveals an altered metabolic state in skeletal muscle aging.
    McDonagh B; Sakellariou GK; Smith NT; Brownridge P; Jackson MJ
    J Proteome Res; 2014 Nov; 13(11):5008-21. PubMed ID: 25181601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exercise stress leads to an acute loss of mitochondrial proteins and disruption of redox control in skeletal muscle of older subjects: An underlying decrease in resilience with aging?
    Pugh JN; Stretton C; McDonagh B; Brownridge P; McArdle A; Jackson MJ; Close GL
    Free Radic Biol Med; 2021 Dec; 177():88-99. PubMed ID: 34655746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic strategies to unravel age-related redox signalling defects in skeletal muscle.
    Cobley JN; Sakellariou GK; Husi H; McDonagh B
    Free Radic Biol Med; 2019 Feb; 132():24-32. PubMed ID: 30219702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactive oxygen and nitrogen species as intracellular signals in skeletal muscle.
    Powers SK; Talbert EE; Adhihetty PJ
    J Physiol; 2011 May; 589(Pt 9):2129-38. PubMed ID: 21224240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of reactive oxygen and nitrogen species in contracting skeletal muscle: potential impact on aging.
    Reid MB; Durham WJ
    Ann N Y Acad Sci; 2002 Apr; 959():108-16. PubMed ID: 11976190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cysteine-mediated redox signalling in the mitochondria.
    Bak DW; Weerapana E
    Mol Biosyst; 2015 Mar; 11(3):678-97. PubMed ID: 25519845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic approaches to quantify cysteine reversible modifications in aging and neurodegenerative diseases.
    Gu L; Robinson RA
    Proteomics Clin Appl; 2016 Dec; 10(12):1159-1177. PubMed ID: 27666938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscle redox signalling pathways in exercise. Role of antioxidants.
    Mason SA; Morrison D; McConell GK; Wadley GD
    Free Radic Biol Med; 2016 Sep; 98():29-45. PubMed ID: 26912034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox proteomics: from bench to bedside.
    Ckless K
    Adv Exp Med Biol; 2014; 806():301-17. PubMed ID: 24952188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Quantitative Tissue-Specific Landscape of Protein Redox Regulation during Aging.
    Xiao H; Jedrychowski MP; Schweppe DK; Huttlin EL; Yu Q; Heppner DE; Li J; Long J; Mills EL; Szpyt J; He Z; Du G; Garrity R; Reddy A; Vaites LP; Paulo JA; Zhang T; Gray NS; Gygi SP; Chouchani ET
    Cell; 2020 Mar; 180(5):968-983.e24. PubMed ID: 32109415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactive oxygen species and redox-regulation of skeletal muscle adaptations to exercise.
    Jackson MJ
    Philos Trans R Soc Lond B Biol Sci; 2005 Dec; 360(1464):2285-91. PubMed ID: 16321798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fatiguing contractions increase protein S-glutathionylation occupancy in mouse skeletal muscle.
    Kramer PA; Duan J; Gaffrey MJ; Shukla AK; Wang L; Bammler TK; Qian WJ; Marcinek DJ
    Redox Biol; 2018 Jul; 17():367-376. PubMed ID: 29857311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age-related changes in skeletal muscle reactive oxygen species generation and adaptive responses to reactive oxygen species.
    Jackson MJ; McArdle A
    J Physiol; 2011 May; 589(Pt 9):2139-45. PubMed ID: 21320885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mass spectrometry and redox proteomics: applications in disease.
    Butterfield DA; Gu L; Di Domenico F; Robinson RA
    Mass Spectrom Rev; 2014; 33(4):277-301. PubMed ID: 24930952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exercise and immobilization in aging animals: the involvement of oxidative stress and NF-kappaB activation.
    Bar-Shai M; Carmeli E; Ljubuncic P; Reznick AZ
    Free Radic Biol Med; 2008 Jan; 44(2):202-14. PubMed ID: 18191756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox signaling in skeletal muscle: role of aging and exercise.
    Ji LL
    Adv Physiol Educ; 2015 Dec; 39(4):352-9. PubMed ID: 26628659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compartmentalized muscle redox signals controlling exercise metabolism - Current state, future challenges.
    Henriquez-Olguin C; Meneses-Valdes R; Jensen TE
    Redox Biol; 2020 Aug; 35():101473. PubMed ID: 32122793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Irreversible plasma and muscle protein oxidation and physical exercise.
    Gorini G; Gamberi T; Fiaschi T; Mannelli M; Modesti A; Magherini F
    Free Radic Res; 2019 Feb; 53(2):126-138. PubMed ID: 30513020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.