BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 25109988)

  • 1. Intermolecular disulfide-dependent redox signalling.
    Putker M; Vos HR; Dansen TB
    Biochem Soc Trans; 2014 Aug; 42(4):971-8. PubMed ID: 25109988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intermolecular disulfide bond to modulate protein function as a redox-sensing switch.
    Nagahara N
    Amino Acids; 2011 Jun; 41(1):59-72. PubMed ID: 20177947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Forkhead box o as a sensor, mediator, and regulator of redox signaling.
    de Keizer PL; Burgering BM; Dansen TB
    Antioxid Redox Signal; 2011 Mar; 14(6):1093-106. PubMed ID: 20626320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thiol-based redox signalling: rust never sleeps.
    Wouters MA; Iismaa S; Fan SW; Haworth NL
    Int J Biochem Cell Biol; 2011 Aug; 43(8):1079-85. PubMed ID: 21513814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cysteine-mediated redox signalling in the mitochondria.
    Bak DW; Weerapana E
    Mol Biosyst; 2015 Mar; 11(3):678-97. PubMed ID: 25519845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thiols in cellular redox signalling and control.
    Moran LK; Gutteridge JM; Quinlan GJ
    Curr Med Chem; 2001 Jun; 8(7):763-72. PubMed ID: 11375748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox regulation of SH2-domain-containing protein tyrosine phosphatases by two backdoor cysteines.
    Chen CY; Willard D; Rudolph J
    Biochemistry; 2009 Feb; 48(6):1399-409. PubMed ID: 19166311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Post-translational disulfide modifications in cell signaling--role of inter-protein, intra-protein, S-glutathionyl, and S-cysteaminyl disulfide modifications in signal transmission.
    O'Brian CA; Chu F
    Free Radic Res; 2005 May; 39(5):471-80. PubMed ID: 16036322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cysteine/cystine couple is a newly recognized node in the circuitry for biologic redox signaling and control.
    Jones DP; Go YM; Anderson CL; Ziegler TR; Kinkade JM; Kirlin WG
    FASEB J; 2004 Aug; 18(11):1246-8. PubMed ID: 15180957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A direct way of redox sensing.
    Benoit R; Auer M
    RNA Biol; 2011; 8(1):18-23. PubMed ID: 21220941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox-sensitive cysteines bridge p300/CBP-mediated acetylation and FoxO4 activity.
    Dansen TB; Smits LM; van Triest MH; de Keizer PL; van Leenen D; Koerkamp MG; Szypowska A; Meppelink A; Brenkman AB; Yodoi J; Holstege FC; Burgering BM
    Nat Chem Biol; 2009 Sep; 5(9):664-72. PubMed ID: 19648934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular basis of the redox regulation of SUMO proteases: a protective mechanism of intermolecular disulfide linkage against irreversible sulfhydryl oxidation.
    Xu Z; Lam LS; Lam LH; Chau SF; Ng TB; Au SW
    FASEB J; 2008 Jan; 22(1):127-37. PubMed ID: 17704192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cysteines under ROS attack in plants: a proteomics view.
    Akter S; Huang J; Waszczak C; Jacques S; Gevaert K; Van Breusegem F; Messens J
    J Exp Bot; 2015 May; 66(10):2935-44. PubMed ID: 25750420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionary acquisition of cysteines determines FOXO paralog-specific redox signaling.
    Putker M; Vos HR; van Dorenmalen K; de Ruiter H; Duran AG; Snel B; Burgering BM; Vermeulen M; Dansen TB
    Antioxid Redox Signal; 2015 Jan; 22(1):15-28. PubMed ID: 25069953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aspects of the biological redox chemistry of cysteine: from simple redox responses to sophisticated signalling pathways.
    Jacob C; Knight I; Winyard PG
    Biol Chem; 2006; 387(10-11):1385-97. PubMed ID: 17081111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversible cysteine oxidation in hydrogen peroxide sensing and signal transduction.
    García-Santamarina S; Boronat S; Hidalgo E
    Biochemistry; 2014 Apr; 53(16):2560-80. PubMed ID: 24738931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detecting disulfide-bound complexes and the oxidative regulation of cyclic nucleotide-dependent protein kinases by H2O2.
    Burgoyne JR; Eaton P
    Methods Enzymol; 2013; 528():111-28. PubMed ID: 23849862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reversible thiol oxidation in the H2O2-dependent activation of the transcription factor Pap1.
    Calvo IA; Ayté J; Hidalgo E
    J Cell Sci; 2013 May; 126(Pt 10):2279-84. PubMed ID: 23525001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zinc center as redox switch--new function for an old motif.
    Ilbert M; Graf PC; Jakob U
    Antioxid Redox Signal; 2006; 8(5-6):835-46. PubMed ID: 16771674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multistep disulfide bond formation in Yap1 is required for sensing and transduction of H2O2 stress signal.
    Okazaki S; Tachibana T; Naganuma A; Mano N; Kuge S
    Mol Cell; 2007 Aug; 27(4):675-88. PubMed ID: 17707237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.