BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

757 related articles for article (PubMed ID: 25110000)

  • 1. Role of CoA and acetyl-CoA in regulating cardiac fatty acid and glucose oxidation.
    Abo Alrob O; Lopaschuk GD
    Biochem Soc Trans; 2014 Aug; 42(4):1043-51. PubMed ID: 25110000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Malonyl coenzyme a decarboxylase inhibition protects the ischemic heart by inhibiting fatty acid oxidation and stimulating glucose oxidation.
    Dyck JR; Cheng JF; Stanley WC; Barr R; Chandler MP; Brown S; Wallace D; Arrhenius T; Harmon C; Yang G; Nadzan AM; Lopaschuk GD
    Circ Res; 2004 May; 94(9):e78-84. PubMed ID: 15105298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Malonyl CoA control of fatty acid oxidation in the newborn heart in response to increased fatty acid supply.
    Onay-Besikci A; Sambandam N
    Can J Physiol Pharmacol; 2006 Nov; 84(11):1215-22. PubMed ID: 17218986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of malonyl-CoA in heart disease and the hypothalamic control of obesity.
    Folmes CD; Lopaschuk GD
    Cardiovasc Res; 2007 Jan; 73(2):278-87. PubMed ID: 17126822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Obesity-induced lysine acetylation increases cardiac fatty acid oxidation and impairs insulin signalling.
    Alrob OA; Sankaralingam S; Ma C; Wagg CS; Fillmore N; Jaswal JS; Sack MN; Lehner R; Gupta MP; Michelakis ED; Padwal RS; Johnstone DE; Sharma AM; Lopaschuk GD
    Cardiovasc Res; 2014 Sep; 103(4):485-97. PubMed ID: 24966184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulating cardiac energy metabolism and bioenergetics by targeting the DNA damage repair protein BRCA1.
    Singh KK; Shukla PC; Yanagawa B; Quan A; Lovren F; Pan Y; Wagg CS; Teoh H; Lopaschuk GD; Verma S
    J Thorac Cardiovasc Surg; 2013 Sep; 146(3):702-9. PubMed ID: 23317938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acetylation control of cardiac fatty acid β-oxidation and energy metabolism in obesity, diabetes, and heart failure.
    Fukushima A; Lopaschuk GD
    Biochim Biophys Acta; 2016 Dec; 1862(12):2211-2220. PubMed ID: 27479696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytosolic carnitine acetyltransferase as a source of cytosolic acetyl-CoA: a possible mechanism for regulation of cardiac energy metabolism.
    Altamimi TR; Thomas PD; Darwesh AM; Fillmore N; Mahmoud MU; Zhang L; Gupta A; Al Batran R; Seubert JM; Lopaschuk GD
    Biochem J; 2018 Mar; 475(5):959-976. PubMed ID: 29438065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AMP-activated protein kinase and coordination of hepatic fatty acid metabolism of starved/carbohydrate-refed rats.
    Assifi MM; Suchankova G; Constant S; Prentki M; Saha AK; Ruderman NB
    Am J Physiol Endocrinol Metab; 2005 Nov; 289(5):E794-800. PubMed ID: 15956049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased cardiac fatty acid uptake with dobutamine infusion in swine is accompanied by a decrease in malonyl CoA levels.
    Hall JL; Lopaschuk GD; Barr A; Bringas J; Pizzurro RD; Stanley WC
    Cardiovasc Res; 1996 Nov; 32(5):879-85. PubMed ID: 8944819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The 1993 Merck Frosst Award. Acetyl-CoA carboxylase: an important regulator of fatty acid oxidation in the heart.
    Lopaschuk GD; Gamble J
    Can J Physiol Pharmacol; 1994 Oct; 72(10):1101-9. PubMed ID: 7882173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Malonyl-CoA content and fatty acid oxidation in rat muscle and liver in vivo.
    Chien D; Dean D; Saha AK; Flatt JP; Ruderman NB
    Am J Physiol Endocrinol Metab; 2000 Aug; 279(2):E259-65. PubMed ID: 10913024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The malonyl CoA axis as a potential target for treating ischaemic heart disease.
    Ussher JR; Lopaschuk GD
    Cardiovasc Res; 2008 Jul; 79(2):259-68. PubMed ID: 18499682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AMP-activated protein kinase regulation of fatty acid oxidation in the ischaemic heart.
    Hopkins TA; Dyck JR; Lopaschuk GD
    Biochem Soc Trans; 2003 Feb; 31(Pt 1):207-12. PubMed ID: 12546686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acetylation of mitochondrial proteins by GCN5L1 promotes enhanced fatty acid oxidation in the heart.
    Thapa D; Zhang M; Manning JR; Guimarães DA; Stoner MW; O'Doherty RM; Shiva S; Scott I
    Am J Physiol Heart Circ Physiol; 2017 Aug; 313(2):H265-H274. PubMed ID: 28526709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acetyl-CoA carboxylase involvement in the rapid maturation of fatty acid oxidation in the newborn rabbit heart.
    Lopaschuk GD; Witters LA; Itoi T; Barr R; Barr A
    J Biol Chem; 1994 Oct; 269(41):25871-8. PubMed ID: 7929291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Malonyl CoA control of fatty acid oxidation in the ischemic heart.
    Dyck JR; Lopaschuk GD
    J Mol Cell Cardiol; 2002 Sep; 34(9):1099-109. PubMed ID: 12392882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting malonyl CoA inhibition of mitochondrial fatty acid uptake as an approach to treat cardiac ischemia/reperfusion.
    Ussher JR; Lopaschuk GD
    Basic Res Cardiol; 2009 Mar; 104(2):203-10. PubMed ID: 19242641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased malonyl-CoA levels in muscle from obese and type 2 diabetic subjects lead to decreased fatty acid oxidation and increased lipogenesis; thiazolidinedione treatment reverses these defects.
    Bandyopadhyay GK; Yu JG; Ofrecio J; Olefsky JM
    Diabetes; 2006 Aug; 55(8):2277-85. PubMed ID: 16873691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyperthyroidism facilitates cardiac fatty acid oxidation through altered regulation of cardiac carnitine palmitoyltransferase: studies in vivo and with cardiac myocytes.
    Sugden MC; Priestman DA; Orfali KA; Holness MJ
    Horm Metab Res; 1999 May; 31(5):300-6. PubMed ID: 10422724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.