These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
625 related articles for article (PubMed ID: 25110031)
1. eIF4E-binding proteins: new factors, new locations, new roles. Kamenska A; Simpson C; Standart N Biochem Soc Trans; 2014 Aug; 42(4):1238-45. PubMed ID: 25110031 [TBL] [Abstract][Full Text] [Related]
2. Discovery and characterization of conserved binding of eIF4E 1 (CBE1), a eukaryotic translation initiation factor 4E-binding plant protein. Patrick RM; Lee JCH; Teetsel JRJ; Yang SH; Choy GS; Browning KS J Biol Chem; 2018 Nov; 293(44):17240-17247. PubMed ID: 30213859 [TBL] [Abstract][Full Text] [Related]
3. The Structures of eIF4E-eIF4G Complexes Reveal an Extended Interface to Regulate Translation Initiation. Grüner S; Peter D; Weber R; Wohlbold L; Chung MY; Weichenrieder O; Valkov E; Igreja C; Izaurralde E Mol Cell; 2016 Nov; 64(3):467-479. PubMed ID: 27773676 [TBL] [Abstract][Full Text] [Related]
4. Repressor binding to a dorsal regulatory site traps human eIF4E in a high cap-affinity state. Ptushkina M; von der Haar T; Karim MM; Hughes JM; McCarthy JE EMBO J; 1999 Jul; 18(14):4068-75. PubMed ID: 10406811 [TBL] [Abstract][Full Text] [Related]
5. The 4E-BP Caf20p Mediates Both eIF4E-Dependent and Independent Repression of Translation. Castelli LM; Talavera D; Kershaw CJ; Mohammad-Qureshi SS; Costello JL; Rowe W; Sims PF; Grant CM; Hubbard SJ; Ashe MP; Pavitt GD PLoS Genet; 2015 May; 11(5):e1005233. PubMed ID: 25973932 [TBL] [Abstract][Full Text] [Related]
6. Structural motifs in eIF4G and 4E-BPs modulate their binding to eIF4E to regulate translation initiation in yeast. Grüner S; Weber R; Peter D; Chung MY; Igreja C; Valkov E; Izaurralde E Nucleic Acids Res; 2018 Jul; 46(13):6893-6908. PubMed ID: 30053226 [TBL] [Abstract][Full Text] [Related]
7. Stabilization of eukaryotic initiation factor 4E binding to the mRNA 5'-Cap by domains of eIF4G. von Der Haar T; Ball PD; McCarthy JE J Biol Chem; 2000 Sep; 275(39):30551-5. PubMed ID: 10887196 [TBL] [Abstract][Full Text] [Related]
8. Vesicular stomatitis virus infection alters the eIF4F translation initiation complex and causes dephosphorylation of the eIF4E binding protein 4E-BP1. Connor JH; Lyles DS J Virol; 2002 Oct; 76(20):10177-87. PubMed ID: 12239292 [TBL] [Abstract][Full Text] [Related]
9. Translation initiation factors GleIF4E2 and GleIF4A can interact directly with the components of the pre-initiation complex to facilitate translation initiation in Giardia lamblia. Adedoja AN; McMahan T; Neal JP; Hamal Dhakal S; Jois S; Romo D; Hull K; Garlapati S Mol Biochem Parasitol; 2020 Mar; 236():111258. PubMed ID: 31968220 [TBL] [Abstract][Full Text] [Related]
10. Eukaryotic translation initiation factor 4G (eIF4G) coordinates interactions with eIF4A, eIF4B, and eIF4E in binding and translation of the barley yellow dwarf virus 3' cap-independent translation element (BTE). Zhao P; Liu Q; Miller WA; Goss DJ J Biol Chem; 2017 Apr; 292(14):5921-5931. PubMed ID: 28242763 [TBL] [Abstract][Full Text] [Related]
11. High affinity RNA for mammalian initiation factor 4E interferes with mRNA-cap binding and inhibits translation. Mochizuki K; Oguro A; Ohtsu T; Sonenberg N; Nakamura Y RNA; 2005 Jan; 11(1):77-89. PubMed ID: 15611299 [TBL] [Abstract][Full Text] [Related]
12. A novel inhibitor of cap-dependent translation initiation in yeast: p20 competes with eIF4G for binding to eIF4E. Altmann M; Schmitz N; Berset C; Trachsel H EMBO J; 1997 Mar; 16(5):1114-21. PubMed ID: 9118949 [TBL] [Abstract][Full Text] [Related]
13. The domains of yeast eIF4G, eIF4E and the cap fine-tune eIF4A activities through an intricate network of stimulatory and inhibitory effects. Krause L; Willing F; Andreou AZ; Klostermeier D Nucleic Acids Res; 2022 Jun; 50(11):6497-6510. PubMed ID: 35689631 [TBL] [Abstract][Full Text] [Related]
14. Mitosis-related phosphorylation of the eukaryotic translation suppressor 4E-BP1 and its interaction with eukaryotic translation initiation factor 4E (eIF4E). Sun R; Cheng E; Velásquez C; Chang Y; Moore PS J Biol Chem; 2019 Aug; 294(31):11840-11852. PubMed ID: 31201269 [TBL] [Abstract][Full Text] [Related]
15. Inhibition of Mitogen-activated Protein Kinase (MAPK)-interacting Kinase (MNK) Preferentially Affects Translation of mRNAs Containing Both a 5'-Terminal Cap and Hairpin. Korneeva NL; Song A; Gram H; Edens MA; Rhoads RE J Biol Chem; 2016 Feb; 291(7):3455-67. PubMed ID: 26668315 [TBL] [Abstract][Full Text] [Related]
16. The human eIF4E:4E-BP2 complex structure for studying hyperphosphorylation. Zeng J; Lu C; Huang X; Li Y Phys Chem Chem Phys; 2024 Apr; 26(14):10660-10672. PubMed ID: 38511550 [TBL] [Abstract][Full Text] [Related]
17. Control of the eIF4E activity: structural insights and pharmacological implications. Romagnoli A; D'Agostino M; Ardiccioni C; Maracci C; Motta S; La Teana A; Di Marino D Cell Mol Life Sci; 2021 Nov; 78(21-22):6869-6885. PubMed ID: 34541613 [TBL] [Abstract][Full Text] [Related]