These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 25110130)

  • 41. Multiple host-cell recombination pathways act in Agrobacterium-mediated transformation of plant cells.
    Mestiri I; Norre F; Gallego ME; White CI
    Plant J; 2014 Feb; 77(4):511-20. PubMed ID: 24299074
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Development of a transformation system for Aspergillus sojae based on the Agrobacterium tumefaciens-mediated approach.
    Mora-Lugo R; Zimmermann J; Rizk AM; Fernandez-Lahore M
    BMC Microbiol; 2014 Sep; 14():247. PubMed ID: 25253558
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Detection of Oil Palm Root Penetration by Agrobacterium-Mediated Transformed Ganoderma boninense, Expressing Green Fluorescent Protein.
    Govender N; Wong MY
    Phytopathology; 2017 Apr; 107(4):483-490. PubMed ID: 27918241
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Functional analysis of autophagy genes via Agrobacterium-mediated transformation in the vascular Wilt fungus Verticillium dahliae.
    Zhou L; Zhao J; Guo W; Zhang T
    J Genet Genomics; 2013 Aug; 40(8):421-31. PubMed ID: 23969251
    [TBL] [Abstract][Full Text] [Related]  

  • 45.
    Satish L; Kamle M; Keren G; Patil CD; Yehezkel G; Barak Z; Kagan-Zur V; Kushmaro A; Sitrit Y
    Genes (Basel); 2020 Oct; 11(11):. PubMed ID: 33143066
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Targeted and random genetic modification of the black Sigatoka pathogen Pseudocercospora fijiensis by Agrobacterium tumefaciens-mediated transformation.
    Díaz-Trujillo C; Kobayashi AK; Souza M; Chong P; Meijer HJG; Arango Isaza RE; Kema GHJ
    J Microbiol Methods; 2018 May; 148():127-137. PubMed ID: 29654806
    [No Abstract]   [Full Text] [Related]  

  • 47. Ultrastructure of the Penetration and Infection of Pansy Roots by Thielaviopsis basicola.
    Mims CW; Copes WE; Richardson EA
    Phytopathology; 2000 Aug; 90(8):843-50. PubMed ID: 18944505
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Agrobacterium tumefaciens-mediated transformation of Coniella granati.
    Yuan H; Hou H; Huang T; Zhou Z; Tu H; Wang L
    J Microbiol Methods; 2021 Mar; 182():106149. PubMed ID: 33493491
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Plant-extract-induced changes in the proteome of the soil-borne pathogenic fungus Thielaviopsis basicola.
    Coumans JV; Moens PD; Poljak A; Al-Jaaidi S; Pereg L; Raftery MJ
    Proteomics; 2010 Apr; 10(8):1573-91. PubMed ID: 20186748
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Agrobactrium tumefaciens-mediated transformation of Monascus ruber.
    Yang YJ; Lee I
    J Microbiol Biotechnol; 2008 Apr; 18(4):754-8. PubMed ID: 18467872
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Transformation system of Aspergillus japonicus mediated by Agrobacterium tumefaciens].
    Guo H; Yang Z; Xing L; Li M
    Wei Sheng Wu Xue Bao; 2011 Jan; 51(1):115-21. PubMed ID: 21465797
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enhanced resistance against Thielaviopsis basicola in transgenic cotton plants expressing Arabidopsis NPR1 gene.
    Kumar V; Joshi SG; Bell AA; Rathore KS
    Transgenic Res; 2013 Apr; 22(2):359-68. PubMed ID: 23001518
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Genetic transformation of European chestnut somatic embryos with a native thaumatin-like protein (CsTL1) gene isolated from Castanea sativa seeds.
    Corredoira E; Valladares S; Allona I; Aragoncillo C; Vieitez AM; Ballester A
    Tree Physiol; 2012 Nov; 32(11):1389-402. PubMed ID: 23086811
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Agrobacterium tumefaciens-mediated transformation of Leptosphaeria spp. and Oculimacula spp. with the reef coral gene DsRed and the jellyfish gene gfp.
    Eckert M; Maguire K; Urban M; Foster S; Fitt B; Lucas J; Hammond-Kosack K
    FEMS Microbiol Lett; 2005 Dec; 253(1):67-74. PubMed ID: 16243451
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Agrobacterium tumefaciens mediated transformation of marine microalgae Schizochytrium.
    Cheng R; Ma R; Li K; Rong H; Lin X; Wang Z; Yang S; Ma Y
    Microbiol Res; 2012 Mar; 167(3):179-86. PubMed ID: 21641193
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Expression of the fluorescent proteins DsRed and EGFP to visualize early events of colonization of the chickpea blight fungus Ascochyta rabiei.
    Nizam S; Singh K; Verma PK
    Curr Genet; 2010 Aug; 56(4):391-9. PubMed ID: 20461519
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Agrobacterium tumefaciens-mediated genetic transformation of Salix matsudana Koidz. using mature seeds.
    Yang J; Yi J; Yang C; Li C
    Tree Physiol; 2013 Jun; 33(6):628-39. PubMed ID: 23771952
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Genetic diversity and biocontrol potential of fluorescent pseudomonads producing phloroglucinols and hydrogen cyanide from Swiss soils naturally suppressive or conducive to Thielaviopsis basicola-mediated black root rot of tobacco.
    Ramette A; Moënne-Loccoz Y; Défago G
    FEMS Microbiol Ecol; 2006 Mar; 55(3):369-81. PubMed ID: 16466376
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Agrobacterium-mediated transformation of Botrytis cinerea, simple purification of monokaryotic transformants and rapid conidia-based identification of the transfer-DNA host genomic DNA flanking sequences.
    Rolland S; Jobic C; Fèvre M; Bruel C
    Curr Genet; 2003 Nov; 44(3):164-71. PubMed ID: 12937946
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Transformation of the plant Kalanchoë daigremontiana using Agrobacterium tumefaciens.
    Garcês H; Sinha N
    Cold Spring Harb Protoc; 2009 Oct; 2009(10):pdb.prot5303. PubMed ID: 20147048
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.