BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 25110351)

  • 1. Effects of DNA probe and target flexibility on the performance of a "signal-on" electrochemical DNA sensor.
    Wu Y; Lai RY
    Anal Chem; 2014 Sep; 86(17):8888-95. PubMed ID: 25110351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a "signal-on" electrochemical DNA sensor with an oligo-thymine spacer for point mutation detection.
    Wu Y; Lai RY
    Chem Commun (Camb); 2013 Apr; 49(33):3422-4. PubMed ID: 23503676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of redox label tether length and flexibility on sensor performance of displacement-based electrochemical DNA sensors.
    Yu ZG; Zaitouna AJ; Lai RY
    Anal Chim Acta; 2014 Feb; 812():176-83. PubMed ID: 24491779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of signaling probe conformation on sensor performance of a displacement-based electrochemical DNA sensor.
    Yu ZG; Lai RY
    Anal Chem; 2013 Mar; 85(6):3340-6. PubMed ID: 23413882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular beacon mediated circular strand displacement strategy for constructing a ratiometric electrochemical deoxyribonucleic acid sensor.
    Gao F; Du L; Zhang Y; Tang D; Du Y
    Anal Chim Acta; 2015 Jul; 883():67-73. PubMed ID: 26088778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An electrochemical DNA sensor for sequence-specific DNA recognization in a homogeneous solution.
    Cui HF; Cheng L; Zhang J; Liu R; Zhang C; Fan H
    Biosens Bioelectron; 2014 Jun; 56():124-8. PubMed ID: 24480127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of probe length, probe geometry, and redox-tag placement on the performance of the electrochemical E-DNA sensor.
    Lubin AA; Hunt BV; White RJ; Plaxco KW
    Anal Chem; 2009 Mar; 81(6):2150-8. PubMed ID: 19215066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amplified detection of femtomolar DNA based on a one-to-few recognition reaction between DNA-Au conjugate and target DNA.
    Wang Z; Zhang J; Zhu C; Wu S; Mandler D; Marks RS; Zhang H
    Nanoscale; 2014 Mar; 6(6):3110-5. PubMed ID: 24488333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical DNA sensor based on methylene blue functionalized polythiophene as a hybridization indicator.
    Liu M; Luo C; Peng H
    Talanta; 2012 Jan; 88():216-21. PubMed ID: 22265490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of an electrochemical mercury sensor using alternating current, cyclic, square wave and differential pulse voltammetry.
    Guerreiro GV; Zaitouna AJ; Lai RY
    Anal Chim Acta; 2014 Jan; 810():79-85. PubMed ID: 24439508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly sensitive electrochemical sensor using a MWCNTs/GNPs-modified electrode for lead (II) detection based on Pb(2+)-induced G-rich DNA conformation.
    Zhu Y; Zeng GM; Zhang Y; Tang L; Chen J; Cheng M; Zhang LH; He L; Guo Y; He XX; Lai MY; He YB
    Analyst; 2014 Oct; 139(19):5014-20. PubMed ID: 25105175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Folding-upon-binding and signal-on electrochemical DNA sensor with high affinity and specificity.
    Idili A; Amodio A; Vidonis M; Feinberg-Somerson J; Castronovo M; Ricci F
    Anal Chem; 2014 Sep; 86(18):9013-9. PubMed ID: 24947124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A reagentless and reusable electrochemical DNA sensor based on target hybridization-induced stem-loop probe formation.
    Yu ZG; Lai RY
    Chem Commun (Camb); 2012 Nov; 48(85):10523-5. PubMed ID: 22992567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dual-signalling electrochemical DNA sensor based on target hybridization-induced change in DNA probe flexibility.
    Yang W; Lai RY
    Chem Commun (Camb); 2012 Sep; 48(69):8703-5. PubMed ID: 22825042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the stem-loop and linear probe-based electrochemical DNA sensors by alternating current voltammetry and cyclic voltammetry.
    Yang W; Lai RY
    Langmuir; 2011 Dec; 27(23):14669-77. PubMed ID: 21981414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The utilization of SiNWs/AuNPs-modified indium tin oxide (ITO) in fabrication of electrochemical DNA sensor.
    Rashid JI; Yusof NA; Abdullah J; Hashim U; Hajian R
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():270-6. PubMed ID: 25491829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical DNA biosensor for the detection of specific gene related to Trichoderma harzianum species.
    Siddiquee S; Yusof NA; Salleh AB; Abu Bakar F; Heng LY
    Bioelectrochemistry; 2010 Aug; 79(1):31-6. PubMed ID: 19945357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical techniques for characterization of stem-loop probe and linear probe-based DNA sensors.
    Lai RY; Walker B; Stormberg K; Zaitouna AJ; Yang W
    Methods; 2013 Dec; 64(3):267-75. PubMed ID: 23933234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled and efficient hybridization achieved with DNA probes immobilized solely through preferential DNA-substrate interactions.
    Schreiner SM; Shudy DF; Hatch AL; Opdahl A; Whitman LJ; Petrovykh DY
    Anal Chem; 2010 Apr; 82(7):2803-10. PubMed ID: 20196546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ternary DNA chip based on a novel thymine spacer group chemistry.
    Yang Y; Yildiz UH; Peh J; Liedberg B
    Colloids Surf B Biointerfaces; 2015 Jan; 125():270-6. PubMed ID: 25465760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.