These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
379 related articles for article (PubMed ID: 25110709)
1. The impact of simulated and real microgravity on bone cells and mesenchymal stem cells. Ulbrich C; Wehland M; Pietsch J; Aleshcheva G; Wise P; van Loon J; Magnusson N; Infanger M; Grosse J; Eilles C; Sundaresan A; Grimm D Biomed Res Int; 2014; 2014():928507. PubMed ID: 25110709 [TBL] [Abstract][Full Text] [Related]
2. Tissue Engineering Under Microgravity Conditions-Use of Stem Cells and Specialized Cells. Grimm D; Egli M; Krüger M; Riwaldt S; Corydon TJ; Kopp S; Wehland M; Wise P; Infanger M; Mann V; Sundaresan A Stem Cells Dev; 2018 Jun; 27(12):787-804. PubMed ID: 29596037 [TBL] [Abstract][Full Text] [Related]
3. Scaffold-free Tissue Formation Under Real and Simulated Microgravity Conditions. Aleshcheva G; Bauer J; Hemmersbach R; Slumstrup L; Wehland M; Infanger M; Grimm D Basic Clin Pharmacol Toxicol; 2016 Oct; 119 Suppl 3():26-33. PubMed ID: 26826674 [TBL] [Abstract][Full Text] [Related]
4. Scalable Microgravity Simulator Used for Long-Term Musculoskeletal Cells and Tissue Engineering. Cazzaniga A; Ille F; Wuest S; Haack C; Koller A; Giger-Lange C; Zocchi M; Egli M; Castiglioni S; Maier JA Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33255352 [TBL] [Abstract][Full Text] [Related]
5. Growing tissues in real and simulated microgravity: new methods for tissue engineering. Grimm D; Wehland M; Pietsch J; Aleshcheva G; Wise P; van Loon J; Ulbrich C; Magnusson NE; Infanger M; Bauer J Tissue Eng Part B Rev; 2014 Dec; 20(6):555-66. PubMed ID: 24597549 [TBL] [Abstract][Full Text] [Related]
6. Fluid and Bubble Flow Detach Adherent Cancer Cells to Form Spheroids on a Random Positioning Machine. Cortés-Sánchez JL; Melnik D; Sandt V; Kahlert S; Marchal S; Johnson IRD; Calvaruso M; Liemersdorf C; Wuest SL; Grimm D; Krüger M Cells; 2023 Nov; 12(22):. PubMed ID: 37998400 [TBL] [Abstract][Full Text] [Related]
7. Characterization of the osteoblast-like cell phenotype under microgravity conditions in the NASA-approved Rotating Wall Vessel bioreactor (RWV). Rucci N; Migliaccio S; Zani BM; Taranta A; Teti A J Cell Biochem; 2002; 85(1):167-79. PubMed ID: 11891860 [TBL] [Abstract][Full Text] [Related]
8. Changes in Human Foetal Osteoblasts Exposed to the Random Positioning Machine and Bone Construct Tissue Engineering. Mann V; Grimm D; Corydon TJ; Krüger M; Wehland M; Riwaldt S; Sahana J; Kopp S; Bauer J; Reseland JE; Infanger M; Mari Lian A; Okoro E; Sundaresan A Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30889841 [TBL] [Abstract][Full Text] [Related]
9. The Fight against Cancer by Microgravity: The Multicellular Spheroid as a Metastasis Model. Grimm D; Schulz H; Krüger M; Cortés-Sánchez JL; Egli M; Kraus A; Sahana J; Corydon TJ; Hemmersbach R; Wise PM; Infanger M; Wehland M Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328492 [TBL] [Abstract][Full Text] [Related]
10. The effects of microgravity on differentiation and cell growth in stem cells and cancer stem cells. Grimm D; Wehland M; Corydon TJ; Richter P; Prasad B; Bauer J; Egli M; Kopp S; Lebert M; Krüger M Stem Cells Transl Med; 2020 Aug; 9(8):882-894. PubMed ID: 32352658 [TBL] [Abstract][Full Text] [Related]
11. The effect of simulated microgravity by three-dimensional clinostat on bone tissue engineering. Nishikawa M; Ohgushi H; Tamai N; Osuga K; Uemura M; Yoshikawa H; Myoui A Cell Transplant; 2005; 14(10):829-35. PubMed ID: 16454357 [TBL] [Abstract][Full Text] [Related]
12. Three-dimensional growth of endothelial cells in the microgravity-based rotating wall vessel bioreactor. Sanford GL; Ellerson D; Melhado-Gardner C; Sroufe AE; Harris-Hooker S In Vitro Cell Dev Biol Anim; 2002 Oct; 38(9):493-504. PubMed ID: 12703976 [TBL] [Abstract][Full Text] [Related]
13. An update to space biomedical research: tissue engineering in microgravity bioreactors. Barzegari A; Saei AA Bioimpacts; 2012; 2(1):23-32. PubMed ID: 23678438 [TBL] [Abstract][Full Text] [Related]
14. The effect of the microgravity rotating culture system on the chondrogenic differentiation of bone marrow mesenchymal stem cells. Wu X; Li SH; Lou LM; Chen ZR Mol Biotechnol; 2013 Jun; 54(2):331-6. PubMed ID: 22669584 [TBL] [Abstract][Full Text] [Related]
15. Clinostats and bioreactors. Klaus DM Gravit Space Biol Bull; 2001 Jun; 14(2):55-64. PubMed ID: 11865869 [TBL] [Abstract][Full Text] [Related]
16. Spheroid formation of human thyroid cancer cells under simulated microgravity: a possible role of CTGF and CAV1. Warnke E; Pietsch J; Wehland M; Bauer J; Infanger M; Görög M; Hemmersbach R; Braun M; Ma X; Sahana J; Grimm D Cell Commun Signal; 2014 May; 12():32. PubMed ID: 24885050 [TBL] [Abstract][Full Text] [Related]
17. A comparison of bioreactors for culture of fetal mesenchymal stem cells for bone tissue engineering. Zhang ZY; Teoh SH; Teo EY; Khoon Chong MS; Shin CW; Tien FT; Choolani MA; Chan JK Biomaterials; 2010 Nov; 31(33):8684-95. PubMed ID: 20739062 [TBL] [Abstract][Full Text] [Related]
18. A biaxial rotating bioreactor for the culture of fetal mesenchymal stem cells for bone tissue engineering. Zhang ZY; Teoh SH; Chong WS; Foo TT; Chng YC; Choolani M; Chan J Biomaterials; 2009 May; 30(14):2694-704. PubMed ID: 19223070 [TBL] [Abstract][Full Text] [Related]
19. Erythroid cell growth and differentiation in vitro in the simulated microgravity environment of the NASA rotating wall vessel bioreactor. Sytkowski AJ; Davis KL In Vitro Cell Dev Biol Anim; 2001 Feb; 37(2):79-83. PubMed ID: 11332741 [TBL] [Abstract][Full Text] [Related]
20. Rhythmicity of engraftment and altered cell cycle kinetics of cytokine-cultured murine marrow in simulated microgravity compared with static cultures. Colvin GA; Lambert JF; Carlson JE; McAuliffe CI; Abedi M; Quesenberry PJ In Vitro Cell Dev Biol Anim; 2002 Jun; 38(6):343-51. PubMed ID: 12513122 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]