BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 25110806)

  • 1. Synthesis and fungistatic activity of bicyclic lactones and lactams against Botrytis cinerea, Penicillium citrinum, and Aspergillus glaucus.
    Walczak P; Pannek J; Boratyński F; Janik-Polanowicz A; Olejniczak T
    J Agric Food Chem; 2014 Aug; 62(34):8571-8. PubMed ID: 25110806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fungistatic activity of bicyclo[4.3.0]-γ-lactones.
    Olejniczak T; Boratyński F; Białońska A
    J Agric Food Chem; 2011 Jun; 59(11):6071-81. PubMed ID: 21520970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure--activity relationships in the fungistatic activity against Botrytis cinerea of clovanes modified on ring C.
    Deligeorgopoulou A; Macías-Sánchez AJ; Mobbs DJ; Hitchcock PB; Hanson JR; Collado IG
    J Nat Prod; 2004 May; 67(5):793-8. PubMed ID: 15165139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antifungal activity of β-carbolines on Penicillium digitatum and Botrytis cinerea.
    Olmedo GM; Cerioni L; González MM; Cabrerizo FM; Rapisarda VA; Volentini SI
    Food Microbiol; 2017 Apr; 62():9-14. PubMed ID: 27889171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New synthesis and biological evaluation of benzothiazole derivates as antifungal agents.
    Herrera Cano N; Ballari MS; López AG; Santiago AN
    J Agric Food Chem; 2015 Apr; 63(14):3681-6. PubMed ID: 25797910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of 1-acyl-3-isopropenylbenzimidazolone derivatives and their activity against Botrytis cinerea.
    Li SK; Ji ZQ; Zhang JW; Guo ZY; Wu WJ
    J Agric Food Chem; 2010 Mar; 58(5):2668-72. PubMed ID: 20102200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro studies on the effect of some chemicals on the growth and sporification of Penicillium expansum and Botrytis cinerea.
    Pani G; Molinu MG; Dore A; Venditti T; Petretto A; D'Hallewin G
    Commun Agric Appl Biol Sci; 2011; 76(4):721-5. PubMed ID: 22702192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design, Synthesis, and SAR of Novel 2-Glycinamide Cyclohexyl Sulfonamide Derivatives against Botrytis cinerea.
    Cai N; Liu C; Feng Z; Li X; Qi Z; Ji M; Qin P; Ahmed W; Cui Z
    Molecules; 2018 Mar; 23(4):. PubMed ID: 29570637
    [No Abstract]   [Full Text] [Related]  

  • 9. nor-Mevaldic acid surrogates as selective antifungal agent leads against Botrytis cinerea. Enantioselective preparation of 4-hydroxy-6-(1-phenylethoxy)tetrahydro-2H-pyran-2-one.
    Botubol-Ares JM; Durán-Peña MJ; Hernández-Galán R; Collado IG; Harwood LM; Macías-Sánchez AJ
    Bioorg Med Chem; 2015 Jul; 23(13):3379-87. PubMed ID: 25971873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis, fungicidal activity, and structure-activity relationship of spiro-compounds containing macrolactam (macrolactone) and thiadiazoline rings.
    Li JJ; Liang XM; Jin SH; Zhang JJ; Yuan HZ; Qi SH; Chen FH; Wang DQ
    J Agric Food Chem; 2010 Mar; 58(5):2659-63. PubMed ID: 20041703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and in Vitro Antifungal Activity against Botrytis cinerea of Geranylated Phenols and Their Phenyl Acetate Derivatives.
    Chávez MI; Soto M; Taborga L; Díaz K; Olea AF; Bay C; Peña-Cortés H; Espinoza L
    Int J Mol Sci; 2015 Aug; 16(8):19130-52. PubMed ID: 26287171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and antifungal activity of chalcone derivatives.
    Zheng Y; Wang X; Gao S; Ma M; Ren G; Liu H; Chen X
    Nat Prod Res; 2015; 29(19):1804-10. PubMed ID: 25675372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and fungicidal activity of novel 2,5-disubstituted-1,3,4-oxadiazole derivatives.
    Cui ZN; Shi YX; Zhang L; Ling Y; Li BJ; Nishida Y; Yang XL
    J Agric Food Chem; 2012 Nov; 60(47):11649-56. PubMed ID: 23134289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Green Synthesis of Potential Antifungal Agents: 2-Benzyl Substituted Thiobenzoazoles.
    Ballari MS; Herrera Cano N; Lopez AG; Wunderlin DA; Feresín GE; Santiago AN
    J Agric Food Chem; 2017 Nov; 65(47):10325-10331. PubMed ID: 29099589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of NH006--a photostable fungicide effective against Botrytis cinerea--according to the asymmetric total synthesis of MK8383.
    Hayashi N; Yamamoto K; Minowa N; Mitomi M; Nakada M
    Org Biomol Chem; 2010 Apr; 8(8):1821-5. PubMed ID: 20449485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of Enterococcus faecalis biofilm formation by highly active lactones and lactams analogues of rubrolides.
    Pereira UA; Barbosa LC; Maltha CR; Demuner AJ; Masood MA; Pimenta AL
    Eur J Med Chem; 2014 Jul; 82():127-38. PubMed ID: 24880232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum.
    He L; Liu Y; Mustapha A; Lin M
    Microbiol Res; 2011 Mar; 166(3):207-15. PubMed ID: 20630731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, antifungal activity, and QSAR study of novel trichodermin derivatives.
    Cheng JL; Zheng M; Yao TT; Li XL; Zhao JH; Xia M; Zhu GN
    J Asian Nat Prod Res; 2015; 17(1):47-55. PubMed ID: 25290081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and in vitro antifungal activity of 1-amino-3,4-dialkylnaphthalene-2-carbonitriles and their analogues.
    Wilamowski J; Kulig E; Sepioł JJ; Burgieł ZJ
    Pest Manag Sci; 2001 Jul; 57(7):625-32. PubMed ID: 11464795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biotransformation of bioactive isocaryolanes by Botrytis cinerea.
    Ascari J; Boaventura MA; Takahashi JA; Durán-Patrón R; Hernández-Galán R; Macías-Sánchez AJ; Collado IG
    J Nat Prod; 2011 Aug; 74(8):1707-12. PubMed ID: 21805982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.