BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 25110925)

  • 1. Interfacial hydrogenation and deamination of nitriles to selectively synthesize tertiary amines.
    Lu S; Li C; Wang J; Pan Y; Cao X; Gu H
    Chem Commun (Camb); 2014 Oct; 50(76):11110-3. PubMed ID: 25110925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective N-alkylation of amines using nitriles under hydrogenation conditions: facile synthesis of secondary and tertiary amines.
    Ikawa T; Fujita Y; Mizusaki T; Betsuin S; Takamatsu H; Maegawa T; Monguchi Y; Sajiki H
    Org Biomol Chem; 2012 Jan; 10(2):293-304. PubMed ID: 22068239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective synthesis of secondary amines from nitriles using Pt nanowires as a catalyst.
    Lu S; Wang J; Cao X; Li X; Gu H
    Chem Commun (Camb); 2014 Apr; 50(26):3512-5. PubMed ID: 24558646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly Selective Hydrogenative Conversion of Nitriles into Tertiary, Secondary, and Primary Amines under Flow Reaction Conditions.
    Yamada T; Park K; Furugen C; Jiang J; Shimizu E; Ito N; Sajiki H
    ChemSusChem; 2022 Jan; 15(2):e202102138. PubMed ID: 34779573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of tetrazole-derived organocatalysts via azido-Ugi reaction with cyclic ketimines.
    Shmatova OI; Nenajdenko VG
    J Org Chem; 2013 Sep; 78(18):9214-22. PubMed ID: 23944996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ruthenium/Imidazolylphosphine catalysis: hydrogenation of aliphatic and aromatic nitriles to form amines.
    Werkmeister S; Junge K; Wendt B; Spannenberg A; Jiao H; Bornschein C; Beller M
    Chemistry; 2014 Apr; 20(15):4227-31. PubMed ID: 24615766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly efficient and diastereoselective gold(I)-catalyzed synthesis of tertiary amines from secondary amines and alkynes: substrate scope and mechanistic insights.
    Liu XY; Guo Z; Dong SS; Li XH; Che CM
    Chemistry; 2011 Nov; 17(46):12932-45. PubMed ID: 22012740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reductive and catalytic monoalkylation of primary amines using nitriles as an alkylating reagent.
    Sajiki H; Ikawa T; Hirota K
    Org Lett; 2004 Dec; 6(26):4977-80. PubMed ID: 15606114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asymmetric synthesis of chiral primary amines by transfer hydrogenation of N-(tert-butanesulfinyl)ketimines.
    Guijarro D; Pablo O; Yus M
    J Org Chem; 2010 Aug; 75(15):5265-70. PubMed ID: 20617835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective ruthenium-catalyzed transfer hydrogenations of nitriles to amines with 2-butanol.
    Werkmeister S; Bornschein C; Junge K; Beller M
    Chemistry; 2013 Apr; 19(14):4437-40. PubMed ID: 23450803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic coupling of nitriles with amines to selectively form imines under mild hydrogen pressure.
    Srimani D; Feller M; Ben-David Y; Milstein D
    Chem Commun (Camb); 2012 Dec; 48(97):11853-5. PubMed ID: 23125982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective Hydrogenation of Nitriles to Primary Amines by using a Cobalt Phosphine Catalyst.
    Adam R; Bheeter CB; Cabrero-Antonino JR; Junge K; Jackstell R; Beller M
    ChemSusChem; 2017 Mar; 10(5):842-846. PubMed ID: 28066996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Consecutive intermolecular reductive hydroamination: cooperative transition-metal and chiral Brønsted acid catalysis.
    Fleischer S; Werkmeister S; Zhou S; Junge K; Beller M
    Chemistry; 2012 Jul; 18(29):9005-10. PubMed ID: 22707210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A practical and benign synthesis of primary amines through ruthenium-catalyzed reduction of nitriles.
    Enthaler S; Junge K; Addis D; Erre G; Beller M
    ChemSusChem; 2008; 1(12):1006-10. PubMed ID: 19034895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of N-alkylbis(3-aminopropyl)amines by the catalytic hydrogenation of N-alkylbis(cyanoethyl)amines.
    Denton TT; Joyce AS; Kiely DE
    J Org Chem; 2007 Jun; 72(13):4997-5000. PubMed ID: 17536864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 5-Cyanoamino-4-imidazolecarboxamide and nitrosative guanine deamination: experimental evidence for pyrimidine ring-opening during deamination.
    Qian M; Glaser R
    J Am Chem Soc; 2004 Mar; 126(8):2274-5. PubMed ID: 14982409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new methodology for functionalization at the 3-position of indoles by a combination of boron Lewis acid with nitriles.
    Mizoi K; Mashima Y; Kawashima Y; Takahashi M; Mimori S; Hosokawa M; Murakami Y; Hamana H
    Chem Pharm Bull (Tokyo); 2015; 63(7):538-45. PubMed ID: 26133069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reductions of aliphatic and aromatic nitriles to primary amines with diisopropylaminoborane.
    Haddenham D; Pasumansky L; DeSoto J; Eagon S; Singaram B
    J Org Chem; 2009 Mar; 74(5):1964-70. PubMed ID: 19191712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tandem Blaise-Nenitzescu reaction: one-pot synthesis of 5-hydroxy-α-(aminomethylene)benzofuran-2(3H)-ones from nitriles.
    Chun YS; Ryu KY; Kim JH; Shin H; Lee SG
    Org Biomol Chem; 2011 Mar; 9(5):1317-9. PubMed ID: 21212872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chiral phosphoric acid catalyzed transfer hydrogenation: facile synthetic access to highly optically active trifluoromethylated amines.
    Henseler A; Kato M; Mori K; Akiyama T
    Angew Chem Int Ed Engl; 2011 Aug; 50(35):8180-3. PubMed ID: 21748836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.