BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 25110998)

  • 1. One-pot transformation of cellobiose to formic acid and levulinic acid over ionic-liquid-based polyoxometalate hybrids.
    Li K; Bai L; Amaniampong PN; Jia X; Lee JM; Yang Y
    ChemSusChem; 2014 Sep; 7(9):2670-7. PubMed ID: 25110998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic Conversion of Carbohydrates to Levulinate Ester over Heteropolyanion-Based Ionic Liquids.
    Song C; Liu S; Peng X; Long J; Lou W; Li X
    ChemSusChem; 2016 Dec; 9(23):3307-3316. PubMed ID: 27863064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conversion of levulinic acid into γ-valerolactone using Fe3(CO)12: mimicking a biorefinery setting by exploiting crude liquors from biomass acid hydrolysis.
    Metzker G; Burtoloso AC
    Chem Commun (Camb); 2015 Sep; 51(75):14199-202. PubMed ID: 26258183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The performance of 1,3-dipropyl-2-(2-propoxyphenyl)-4,5-diphenylimidazolium iodide based ionic liquid for biomass conversion into levulinic acid and formic acid.
    Zunita M; Wahyuningrum D; Buchari ; Bundjali B; Gede Wenten I; Boopathy R
    Bioresour Technol; 2020 Nov; 315():123864. PubMed ID: 32711338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective conversion of cellobiose and cellulose into gluconic acid in water in the presence of oxygen, catalyzed by polyoxometalate-supported gold nanoparticles.
    An D; Ye A; Deng W; Zhang Q; Wang Y
    Chemistry; 2012 Mar; 18(10):2938-47. PubMed ID: 22298297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective oxidation of lignocellulosic biomass to formic acid and high-grade cellulose using tailor-made polyoxometalate catalysts.
    Albert J
    Faraday Discuss; 2017 Sep; 202():99-109. PubMed ID: 28653734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of polyoxometalate catalysts in ionic liquids to enhance the dissolution and delignification of woody biomass.
    Sun N; Jiang X; Maxim ML; Metlen A; Rogers RD
    ChemSusChem; 2011 Jan; 4(1):65-73. PubMed ID: 21226213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tetraalkylphosphonium polyoxometalates: electroactive, "task-specific" ionic liquids.
    Rickert PG; Antonio MR; Firestone MA; Kubatko KA; Szreder T; Wishart JF; Dietz ML
    Dalton Trans; 2007 Feb; (5):529-31. PubMed ID: 17225903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-pot synthesis of levulinic acid from cellulose in ionic liquids.
    Shen Y; Sun JK; Yi YX; Wang B; Xu F; Sun RC
    Bioresour Technol; 2015 Sep; 192():812-6. PubMed ID: 26055443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrolysis of cellulose in SO₃H-functionalized ionic liquids.
    Tao F; Song H; Chou L
    Bioresour Technol; 2011 Oct; 102(19):9000-6. PubMed ID: 21757338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conversion of hemicellulose sugars catalyzed by formic acid: kinetics of the dehydration of D-xylose, L-arabinose, and D-glucose.
    Dussan K; Girisuta B; Lopes M; Leahy JJ; Hayes MH
    ChemSusChem; 2015 Apr; 8(8):1411-28. PubMed ID: 25821128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient conversion of lignocellulosic biomass to levulinic acid using acidic ionic liquids.
    Khan AS; Man Z; Bustam MA; Nasrullah A; Ullah Z; Sarwono A; Shah FU; Muhammad N
    Carbohydr Polym; 2018 Feb; 181():208-214. PubMed ID: 29253965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis, Physical Properties and Application of a Series of New Polyoxometalate-Based Ionic Liquids.
    Martinetto Y; Basset S; Pégot B; Roch-Marchal C; Camerel F; Jeftic J; Cottyn-Boitte B; Magnier E; Floquet S
    Molecules; 2021 Jan; 26(2):. PubMed ID: 33477711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective and recyclable depolymerization of cellulose to levulinic acid catalyzed by acidic ionic liquid.
    Ren H; Girisuta B; Zhou Y; Liu L
    Carbohydr Polym; 2015 Mar; 117():569-576. PubMed ID: 25498672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homogeneous Catalyzed Reactions of Levulinic Acid: To γ-Valerolactone and Beyond.
    Omoruyi U; Page S; Hallett J; Miller PW
    ChemSusChem; 2016 Aug; 9(16):2037-47. PubMed ID: 27464831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic conversion of cellulose to chemicals in ionic liquid.
    Tao F; Song H; Chou L
    Carbohydr Res; 2011 Jan; 346(1):58-63. PubMed ID: 21092940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conversion of levulinic acid and formic acid into γ-valerolactone over heterogeneous catalysts.
    Deng L; Zhao Y; Li J; Fu Y; Liao B; Guo QX
    ChemSusChem; 2010 Oct; 3(10):1172-5. PubMed ID: 20872402
    [No Abstract]   [Full Text] [Related]  

  • 18. High-Yield Production of Levulinic Acid from Pretreated Cow Dung in Dilute Acid Aqueous Solution.
    Su J; Shen F; Qiu M; Qi X
    Molecules; 2017 Feb; 22(2):. PubMed ID: 28216587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Depolymerization of microcrystalline cellulose to value added chemicals using sulfate ion promoted zirconia catalyst.
    Kassaye S; Pagar C; Pant KK; Jain S; Gupta R
    Bioresour Technol; 2016 Nov; 220():394-400. PubMed ID: 27598567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conversion of biomass-derived levulinate and formate esters into γ-valerolactone over supported gold catalysts.
    Du XL; Bi QY; Liu YM; Cao Y; Fan KN
    ChemSusChem; 2011 Dec; 4(12):1838-43. PubMed ID: 22105964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.