BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 25111117)

  • 1. In-silico identification and characterization of organic and inorganic chemical stress responding genes in yeast (Saccharomyces cerevisiae).
    Barozai MY; Bashir F; Muzaffar S; Afzal S; Behlil F; Khan M
    Gene; 2014 Oct; 550(1):74-80. PubMed ID: 25111117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p.
    Kawahata M; Masaki K; Fujii T; Iefuji H
    FEMS Yeast Res; 2006 Sep; 6(6):924-36. PubMed ID: 16911514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of transcriptional profiles of Saccharomyces cerevisiae exposed to bisphenol A.
    Bereketoglu C; Arga KY; Eraslan S; Mertoglu B
    Curr Genet; 2017 May; 63(2):253-274. PubMed ID: 27460658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae.
    Li BZ; Yuan YJ
    Appl Microbiol Biotechnol; 2010 May; 86(6):1915-24. PubMed ID: 20309542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative analysis of transcriptional responses to saline stress in the laboratory and brewing strains of Saccharomyces cerevisiae with DNA microarray.
    Hirasawa T; Nakakura Y; Yoshikawa K; Ashitani K; Nagahisa K; Furusawa C; Katakura Y; Shimizu H; Shioya S
    Appl Microbiol Biotechnol; 2006 Apr; 70(3):346-57. PubMed ID: 16283296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of Saccharomyces cerevisiae genome for the distributions of stress-response elements potentially affecting gene expression by transcriptional interference.
    Liu Y; Ye S; Erkine AM
    In Silico Biol; 2009; 9(5-6):379-89. PubMed ID: 22430439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Refining current knowledge on the yeast FLR1 regulatory network by combined experimental and computational approaches.
    Teixeira MC; Dias PJ; Monteiro PT; Sala A; Oliveira AL; Freitas AT; Sá-Correia I
    Mol Biosyst; 2010 Dec; 6(12):2471-81. PubMed ID: 20938527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual effects of plant steroidal alkaloids on Saccharomyces cerevisiae.
    Simons V; Morrissey JP; Latijnhouwers M; Csukai M; Cleaver A; Yarrow C; Osbourn A
    Antimicrob Agents Chemother; 2006 Aug; 50(8):2732-40. PubMed ID: 16870766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolutionary engineering and transcriptomic analysis of nickel-resistant Saccharomyces cerevisiae.
    Küçükgöze G; Alkım C; Yılmaz Ü; Kısakesen Hİ; Gündüz S; Akman S; Çakar ZP
    FEMS Yeast Res; 2013 Dec; 13(8):731-46. PubMed ID: 23992612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxicogenomics using yeast DNA microarrays.
    Yasokawa D; Iwahashi H
    J Biosci Bioeng; 2010 Nov; 110(5):511-22. PubMed ID: 20624688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptome profiling of a Saccharomyces cerevisiae mutant with a constitutively activated Ras/cAMP pathway.
    Jones DL; Petty J; Hoyle DC; Hayes A; Ragni E; Popolo L; Oliver SG; Stateva LI
    Physiol Genomics; 2003 Dec; 16(1):107-18. PubMed ID: 14570984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Saccharomyces cerevisiae and DNA microarray analyses: what did we learn from it for a better understanding and exploitation of yeast biotechnology?
    Hirasawa T; Furusawa C; Shimizu H
    Appl Microbiol Biotechnol; 2010 Jun; 87(2):391-400. PubMed ID: 20414652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The stress response against denatured proteins in the deletion of cytosolic chaperones SSA1/2 is different from heat-shock response in Saccharomyces cerevisiae.
    Matsumoto R; Akama K; Rakwal R; Iwahashi H
    BMC Genomics; 2005 Oct; 6():141. PubMed ID: 16209719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early expression of yeast genes affected by chemical stress.
    Lucau-Danila A; Lelandais G; Kozovska Z; Tanty V; Delaveau T; Devaux F; Jacq C
    Mol Cell Biol; 2005 Mar; 25(5):1860-8. PubMed ID: 15713640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Yeast genomic expression patterns in response to low-shear modeled microgravity.
    Sheehan KB; McInnerney K; Purevdorj-Gage B; Altenburg SD; Hyman LE
    BMC Genomics; 2007 Jan; 8():3. PubMed ID: 17201921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generic and specific transcriptional responses to different weak organic acids in anaerobic chemostat cultures of Saccharomyces cerevisiae.
    Abbott DA; Knijnenburg TA; de Poorter LM; Reinders MJ; Pronk JT; van Maris AJ
    FEMS Yeast Res; 2007 Sep; 7(6):819-33. PubMed ID: 17484738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of differentially expressed genes in yeast Saccharomyces cerevisiae cells with inactivated Mmf1p and Hmf1p, members of proteins family YERO57c/YJGF.
    Pozdniakovaite N; Popendikyte V
    Dev Growth Differ; 2004 Dec; 46(6):545-54. PubMed ID: 15610144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SIR2 and other genes are abundantly expressed in long-lived natural segregants for replicative aging of the budding yeast Saccharomyces cerevisiae.
    Guo Z; Adomas AB; Jackson ED; Qin H; Townsend JP
    FEMS Yeast Res; 2011 Jun; 11(4):345-55. PubMed ID: 21306556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HAL2 overexpression induces iron acquisition in bdf1Δ cells and enhances their salt resistance.
    Chen L; Wang M; Hou J; Fu J; Shen Y; Liu F; Zhang Z; Bao X
    Curr Genet; 2017 May; 63(2):229-239. PubMed ID: 27387517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microarray Analysis of Gene Expression in Saccharomyces cerevisiae kap108Δ Mutants upon Addition of Oxidative Stress.
    Belanger KD; Larson N; Kahn J; Tkachev D; Ay A
    G3 (Bethesda); 2016 Apr; 6(4):1131-9. PubMed ID: 26888869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.