These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

856 related articles for article (PubMed ID: 25111131)

  • 1. Current issues of RNAi therapeutics delivery and development.
    Haussecker D
    J Control Release; 2014 Dec; 195():49-54. PubMed ID: 25111131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Delivery of RNAi therapeutics: work in progress.
    Miller AD
    Expert Rev Med Devices; 2013 Nov; 10(6):781-811. PubMed ID: 24195461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of RNAi technology for targeted therapy--a track of siRNA based agents to RNAi therapeutics.
    Zhou Y; Zhang C; Liang W
    J Control Release; 2014 Nov; 193():270-81. PubMed ID: 24816071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonviral pulmonary delivery of siRNA.
    Merkel OM; Kissel T
    Acc Chem Res; 2012 Jul; 45(7):961-70. PubMed ID: 21905687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyaluronan grafted lipid-based nanoparticles as RNAi carriers for cancer cells.
    Landesman-Milo D; Goldsmith M; Leviatan Ben-Arye S; Witenberg B; Brown E; Leibovitch S; Azriel S; Tabak S; Morad V; Peer D
    Cancer Lett; 2013 Jul; 334(2):221-7. PubMed ID: 22935680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Safety profile of RNAi nanomedicines.
    Barros SA; Gollob JA
    Adv Drug Deliv Rev; 2012 Dec; 64(15):1730-7. PubMed ID: 22732527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Localized RNAi therapeutics of chemoresistant grade IV glioma using hyaluronan-grafted lipid-based nanoparticles.
    Cohen ZR; Ramishetti S; Peshes-Yaloz N; Goldsmith M; Wohl A; Zibly Z; Peer D
    ACS Nano; 2015 Feb; 9(2):1581-91. PubMed ID: 25558928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNAi therapies: Expanding applications for extrahepatic diseases and overcoming delivery challenges.
    Won Lee J; Kyu Shim M; Kim H; Jang H; Lee Y; Hwa Kim S
    Adv Drug Deliv Rev; 2023 Oct; 201():115073. PubMed ID: 37657644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipid Nanoparticle Technology for Clinical Translation of siRNA Therapeutics.
    Kulkarni JA; Witzigmann D; Chen S; Cullis PR; van der Meel R
    Acc Chem Res; 2019 Sep; 52(9):2435-2444. PubMed ID: 31397996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipid-based nanoparticles for siRNA delivery in cancer therapy: paradigms and challenges.
    Gomes-da-Silva LC; Fonseca NA; Moura V; Pedroso de Lima MC; Simões S; Moreira JN
    Acc Chem Res; 2012 Jul; 45(7):1163-71. PubMed ID: 22568781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyethylenimines for RNAi-mediated gene targeting in vivo and siRNA delivery to the lung.
    Günther M; Lipka J; Malek A; Gutsch D; Kreyling W; Aigner A
    Eur J Pharm Biopharm; 2011 Apr; 77(3):438-49. PubMed ID: 21093588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chitosan-based nanoparticles for mucosal delivery of RNAi therapeutics.
    Martirosyan A; Olesen MJ; Howard KA
    Adv Genet; 2014; 88():325-52. PubMed ID: 25409611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Harnessing RNA interference to develop neonatal therapies: from Nobel Prize winning discovery to proof of concept clinical trials.
    DeVincenzo JP
    Early Hum Dev; 2009 Oct; 85(10 Suppl):S31-5. PubMed ID: 19833462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overcoming the Challenges of siRNA Delivery: Nanoparticle Strategies.
    Shajari N; Mansoori B; Davudian S; Mohammadi A; Baradaran B
    Curr Drug Deliv; 2017; 14(1):36-46. PubMed ID: 27538460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeted delivery of siRNA by nonviral vectors: lessons learned from recent advances.
    Li SD; Huang L
    Curr Opin Investig Drugs; 2008 Dec; 9(12):1317-23. PubMed ID: 19037838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Delivery vehicles for small interfering RNA in vivo.
    de Fougerolles AR
    Hum Gene Ther; 2008 Feb; 19(2):125-32. PubMed ID: 18257677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of siRNA delivery to target sites: issues and future directions.
    Khalil IA; Yamada Y; Harashima H
    Expert Opin Drug Deliv; 2018 Nov; 15(11):1053-1065. PubMed ID: 30198792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA interference for therapy in the vascular endothelium.
    Kaufmann J; Ahrens K; Santel A
    Microvasc Res; 2010 Sep; 80(2):286-93. PubMed ID: 20144624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNAi using a chitosan/siRNA nanoparticle system: in vitro and in vivo applications.
    Andersen MØ; Howard KA; Kjems J
    Methods Mol Biol; 2009; 555():77-86. PubMed ID: 19495689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Delivery of siRNA to Retinal Ganglion Cells by Intravitreal Lipid Nanoparticles of Positive Charge.
    Huang X; Chau Y
    Mol Pharm; 2021 Jan; 18(1):377-385. PubMed ID: 33295773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 43.