BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 25111257)

  • 1. A behavioral study of healthy and cancer genes by modeling electrical network.
    Roy T; Barman S
    Gene; 2014 Oct; 550(1):81-92. PubMed ID: 25111257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. System-scale network modeling of cancer using EPoC.
    Abenius T; Jörnsten R; Kling T; Schmidt L; Sánchez J; Nelander S
    Adv Exp Med Biol; 2012; 736():617-43. PubMed ID: 22161356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance Analysis of Network Model to Identify Healthy and Cancerous Colon Genes.
    Roy T; Barman S
    IEEE J Biomed Health Inform; 2016 Mar; 20(2):710-6. PubMed ID: 25730835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling of Cancer Classifier to Predict Site of Origin.
    Roy T; Barman S
    IEEE Trans Nanobioscience; 2016 Jul; 15(5):481-487. PubMed ID: 27295678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene expression complex networks: synthesis, identification, and analysis.
    Lopes FM; Cesar RM; Costa Lda F
    J Comput Biol; 2011 Oct; 18(10):1353-67. PubMed ID: 21548810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of cancer gene attributes using electrical sensor.
    Roy T
    Gene; 2019 Feb; 685():62-69. PubMed ID: 30393193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance analysis of melanoma classifier using electrical modeling technique.
    Roy T; Bhattacharjee P
    Med Biol Eng Comput; 2020 Oct; 58(10):2443-2454. PubMed ID: 32770290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inferring gene networks from discrete expression data.
    Zhang L; Mallick BK
    Biostatistics; 2013 Sep; 14(4):708-22. PubMed ID: 23873894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Network regularised Cox regression and multiplex network models to predict disease comorbidities and survival of cancer.
    Xu H; Moni MA; Liò P
    Comput Biol Chem; 2015 Dec; 59 Pt B():15-31. PubMed ID: 26611766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of susceptibility modules for coronary artery disease using a genome wide integrated network analysis.
    Duan S; Luo X; Dong C
    Gene; 2013 Dec; 531(2):347-54. PubMed ID: 23994195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inferring Boolean networks with perturbation from sparse gene expression data: a general model applied to the interferon regulatory network.
    Yu L; Watterson S; Marshall S; Ghazal P
    Mol Biosyst; 2008 Oct; 4(10):1024-30. PubMed ID: 19082142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling of gene regulatory network dynamics using threshold logic.
    Gowda T; Vrudhula S; Kim S
    Ann N Y Acad Sci; 2009 Mar; 1158():71-81. PubMed ID: 19348633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation and prediction of gene expression level from amino acid and dipeptide composition of its protein.
    Raghava GP; Han JH
    BMC Bioinformatics; 2005 Mar; 6():59. PubMed ID: 15773999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of pairwise gene interaction using threshold logic.
    Gowda T; Vrudhula S; Kim S
    Ann N Y Acad Sci; 2009 Mar; 1158():276-86. PubMed ID: 19348649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new approach to dynamic fuzzy modeling of genetic regulatory networks.
    Sun Y; Feng G; Cao J
    IEEE Trans Nanobioscience; 2010 Dec; 9(4):263-72. PubMed ID: 21041161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A declarative constraint-based method for analyzing discrete genetic regulatory networks.
    Corblin F; Tripodi S; Fanchon E; Ropers D; Trilling L
    Biosystems; 2009 Nov; 98(2):91-104. PubMed ID: 19664681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast and reliable prediction of domain-peptide binding affinity using coarse-grained structure models.
    Tian F; Tan R; Guo T; Zhou P; Yang L
    Biosystems; 2013 Jul; 113(1):40-9. PubMed ID: 23665477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mining susceptibility gene modules and disease risk genes from SNP data by combining network topological properties with support vector regression.
    Hua L; Zhou P; Liu H; Li L; Yang Z; Liu ZC
    J Theor Biol; 2011 Nov; 289():225-36. PubMed ID: 21910999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthetic tetracycline-inducible regulatory networks: computer-aided design of dynamic phenotypes.
    Sotiropoulos V; Kaznessis YN
    BMC Syst Biol; 2007 Jan; 1():7. PubMed ID: 17408514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic network analyzer: a tool for the qualitative modeling and simulation of bacterial regulatory networks.
    Batt G; Besson B; Ciron PE; de Jong H; Dumas E; Geiselmann J; Monte R; Monteiro PT; Page M; Rechenmann F; Ropers D
    Methods Mol Biol; 2012; 804():439-62. PubMed ID: 22144166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.