BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 25111289)

  • 1. Global carbon benefits of material substitution in passenger cars until 2050 and the impact on the steel and aluminum industries.
    Modaresi R; Pauliuk S; Løvik AN; Müller DB
    Environ Sci Technol; 2014 Sep; 48(18):10776-84. PubMed ID: 25111289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Dynamic Fleet Model of U.S Light-Duty Vehicle Lightweighting and Associated Greenhouse Gas Emissions from 2016 to 2050.
    Milovanoff A; Kim HC; De Kleine R; Wallington TJ; Posen ID; MacLean HL
    Environ Sci Technol; 2019 Feb; 53(4):2199-2208. PubMed ID: 30682256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global scenarios of resource and emission savings from material efficiency in residential buildings and cars.
    Pauliuk S; Heeren N; Berrill P; Fishman T; Nistad A; Tu Q; Wolfram P; Hertwich EG
    Nat Commun; 2021 Aug; 12(1):5097. PubMed ID: 34429412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Life-cycle energy and greenhouse gas emission benefits of lightweighting in automobiles: review and harmonization.
    Kim HC; Wallington TJ
    Environ Sci Technol; 2013 Jun; 47(12):6089-97. PubMed ID: 23668335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parametric assessment of climate change impacts of automotive material substitution.
    Geyer R
    Environ Sci Technol; 2008 Sep; 42(18):6973-9. PubMed ID: 18853818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impacts of Vehicle Weight Reduction via Material Substitution on Life-Cycle Greenhouse Gas Emissions.
    Kelly JC; Sullivan JL; Burnham A; Elgowainy A
    Environ Sci Technol; 2015 Oct; 49(20):12535-42. PubMed ID: 26393414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. End-of-life passenger vehicles recycling decision system in China based on dynamic material flow analysis and life cycle assessment.
    Liu M; Chen X; Zhang M; Lv X; Wang H; Chen Z; Huang X; Zhang X; Zhang S
    Waste Manag; 2020 Nov; 117():81-92. PubMed ID: 32818811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unearthing potentials for decarbonizing the U.S. aluminum cycle.
    Liu G; Bangs CE; Müller DB
    Environ Sci Technol; 2011 Nov; 45(22):9515-22. PubMed ID: 21970673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An investigation on well-to-wheel emissions of passenger cars in Turkey.
    Ugurlu A
    Environ Sci Pollut Res Int; 2022 Mar; 29(11):16692-16715. PubMed ID: 34657255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of recycling on cradle-to-gate energy consumption and greenhouse gas emissions of automotive lithium-ion batteries.
    Dunn JB; Gaines L; Sullivan J; Wang MQ
    Environ Sci Technol; 2012 Nov; 46(22):12704-10. PubMed ID: 23075406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of hot metal temperature on CO
    Díaz J; Fernández FJ
    Environ Sci Pollut Res Int; 2020 Jan; 27(1):33-42. PubMed ID: 31522401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduction of life-cycle CO
    Yoshizawa D; Nakamoto Y; Kagawa S
    J Environ Manage; 2023 Oct; 344():118637. PubMed ID: 37487309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Speed-dependent emission of air pollutants from gasoline-powered passenger cars.
    Jung S; Lee M; Kim J; Lyu Y; Park J
    Environ Technol; 2011; 32(11-12):1173-81. PubMed ID: 21970159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recycling of metals: accounting of greenhouse gases and global warming contributions.
    Damgaard A; Larsen AW; Christensen TH
    Waste Manag Res; 2009 Nov; 27(8):773-80. PubMed ID: 19767324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitigation of global greenhouse gas emissions from waste: conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitigation).
    Bogner J; Pipatti R; Hashimoto S; Diaz C; Mareckova K; Diaz L; Kjeldsen P; Monni S; Faaij A; Gao Q; Zhang T; Ahmed MA; Sutamihardja RT; Gregory R;
    Waste Manag Res; 2008 Feb; 26(1):11-32. PubMed ID: 18338699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. If Electric Cars Are Good for Reducing Emissions, They Could Be Even Better with Electric Roads.
    Morfeldt J; Shoman W; Johansson DJA; Yeh S; Karlsson S
    Environ Sci Technol; 2022 Jul; 56(13):9593-9603. PubMed ID: 35735988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-world vehicle emissions as measured by in situ analysis of exhaust plumes.
    Peitzmeier C; Loschke C; Wiedenhaus H; Klemm O
    Environ Sci Pollut Res Int; 2017 Oct; 24(29):23279-23289. PubMed ID: 28836085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inertia of Technology Stocks: A Technology-Explicit Model for the Transition toward a Low-Carbon Global Aluminum Cycle.
    Langhorst M; Billy RG; Schwotzer C; Kaiser F; Müller DB
    Environ Sci Technol; 2024 Jun; 58(22):9624-9635. PubMed ID: 38772914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Options for achieving a 50% cut in industrial carbon emissions by 2050.
    Allwood JM; Cullen JM; Milford RL
    Environ Sci Technol; 2010 Mar; 44(6):1888-94. PubMed ID: 20121181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reducing CO
    Ryan NA; Miller SA; Skerlos SJ; Cooper DR
    Environ Sci Technol; 2020 Nov; 54(22):14598-14608. PubMed ID: 33105076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.