These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 25111319)
61. Parameterization of azole-bridged dinuclear platinum anticancer drugs via a QM/MM force matching procedure. Spiegel K; Magistrato A; Maurer P; Ruggerone P; Rothlisberger U; Carloni P; Reedijk J; Klein ML J Comput Chem; 2008 Jan; 29(1):38-49. PubMed ID: 17705162 [TBL] [Abstract][Full Text] [Related]
62. Determination of cisplatin 1,2-intrastrand guanine-guanine DNA adducts in human leukocytes by high-performance liquid chromatography coupled to inductively coupled plasma mass spectrometry. Harrington CF; Le Pla RC; Jones GD; Thomas AL; Farmer PB Chem Res Toxicol; 2010 Aug; 23(8):1313-21. PubMed ID: 20666396 [TBL] [Abstract][Full Text] [Related]
63. Basis for recognition of cisplatin-modified DNA by high-mobility-group proteins. Ohndorf UM; Rould MA; He Q; Pabo CO; Lippard SJ Nature; 1999 Jun; 399(6737):708-12. PubMed ID: 10385126 [TBL] [Abstract][Full Text] [Related]
64. cis-[PtCl2(4,7-H-5-methyl-7-oxo[1,2,4]triazolo[1,5-a]pyrimidine)2]: a sterically restrictive new cisplatin analogue. Reaction kinetics with model nucleobases, DNA interaction studies, antitumor activity, and structure-activity relationships. Navarro JA; Salas JM; Romero MA; Vilaplana R; Gonzalez-Vílchez F; Faure R J Med Chem; 1998 Jan; 41(3):332-8. PubMed ID: 9464364 [TBL] [Abstract][Full Text] [Related]
65. DNA binding by antitumor trans-[PtCl2(NH3)(thiazole)]. Protein recognition and nucleotide excision repair of monofunctional adducts. Kasparkova J; Novakova O; Farrell N; Brabec V Biochemistry; 2003 Jan; 42(3):792-800. PubMed ID: 12534292 [TBL] [Abstract][Full Text] [Related]
66. A QM/MM study of cisplatin-DNA oligonucleotides: from simple models to realistic systems. Robertazzi A; Platts JA Chemistry; 2006 Jul; 12(22):5747-56. PubMed ID: 16710864 [TBL] [Abstract][Full Text] [Related]
67. Pt-based drugs: the spotlight will be on proteins. Pinato O; Musetti C; Sissi C Metallomics; 2014 Mar; 6(3):380-95. PubMed ID: 24510227 [TBL] [Abstract][Full Text] [Related]
68. Different features of the DNA binding mode of antitumor cis-amminedichlorido(cyclohexylamine)platinum(II) (JM118) and cisplatin in vitro. Kostrhunova H; Vrana O; Suchankova T; Gibson D; Kasparkova J; Brabec V Chem Res Toxicol; 2010 Nov; 23(11):1833-42. PubMed ID: 20939593 [TBL] [Abstract][Full Text] [Related]
69. Marked dependence on carrier-ligand bulk but not on carrier-ligand chirality of the duplex versus single-strand forms of a DNA oligonucleotide with a series of G-Pt(II)-G intrastrand cross-links modeling cisplatin-DNA adducts. Beljanski V; Villanueva JM; Doetsch PW; Natile G; Marzilli LG J Am Chem Soc; 2005 Nov; 127(45):15833-42. PubMed ID: 16277526 [TBL] [Abstract][Full Text] [Related]
70. Recognition of DNA interstrand cross-link of antitumor cisplatin by HMGB1 protein. Kasparkova J; Delalande O; Stros M; Elizondo-Riojas MA; Vojtiskova M; Kozelka J; Brabec V Biochemistry; 2003 Feb; 42(5):1234-44. PubMed ID: 12564926 [TBL] [Abstract][Full Text] [Related]
71. Origins of the distortions in the base pair step adjacent to platinum anticancer drug-DNA adducts. Fundamental NMR solution studies utilizing right-handed cross-link models having 5'- and 3'-flanking residues. Saad JS; Natile G; Marzilli LG J Am Chem Soc; 2009 Sep; 131(34):12314-24. PubMed ID: 19655752 [TBL] [Abstract][Full Text] [Related]
73. Density functional theory and surface enhanced Raman spectroscopy characterization of novel platinum drugs. Giese B; Deacon GB; Kuduk-Jaworska J; McNaughton D Biopolymers; 2002; 67(4-5):294-7. PubMed ID: 12012451 [TBL] [Abstract][Full Text] [Related]
74. Site-specific d(GpG) intrastrand cross-links formed by dinuclear platinum complexes. Bending and NMR studies. Kaspárková J; Mellish KJ; Qu Y; Brabec V; Farrell N Biochemistry; 1996 Dec; 35(51):16705-13. PubMed ID: 8988007 [TBL] [Abstract][Full Text] [Related]
75. Tuning the metal binding site specificity of a fluorescent sensor protein: from copper to zinc and back. Koay MS; Janssen BM; Merkx M Dalton Trans; 2013 Mar; 42(9):3230-2. PubMed ID: 23076326 [TBL] [Abstract][Full Text] [Related]
76. Investigation relevant to the conformation of the 17-membered Pt(d(GpG)) macrocyclic ring formed by Pt anticancer drugs with DNA: Pt complexes with a Goldilocks carrier ligand. Maheshwari V; Marzilli PA; Marzilli LG Inorg Chem; 2011 Jul; 50(14):6626-36. PubMed ID: 21667929 [TBL] [Abstract][Full Text] [Related]
77. DNA adducts of the enantiomers of the Pt(II) complexes of the ahaz ligand (ahaz=3-aminohexahydroazepine) and recognition of these adducts by HMG domain proteins. Malina J; Vojtiskova M; Brabec V; Diakos CI; Hambley TW Biochem Biophys Res Commun; 2005 Jul; 332(4):1034-41. PubMed ID: 15922304 [TBL] [Abstract][Full Text] [Related]
78. Roles of Atox1 and p53 in the trafficking of copper-64 to tumor cell nuclei: implications for cancer therapy. Beaino W; Guo Y; Chang AJ; Anderson CJ J Biol Inorg Chem; 2014 Mar; 19(3):427-38. PubMed ID: 24445997 [TBL] [Abstract][Full Text] [Related]
79. Structural Determinants of Cisplatin and Transplatin Binding to the Met-Rich Motif of Ctr1: A Computational Spectroscopy Approach. Nguyen TH; Arnesano F; Scintilla S; Rossetti G; Ippoliti E; Carloni P; Natile G J Chem Theory Comput; 2012 Aug; 8(8):2912-20. PubMed ID: 26592130 [TBL] [Abstract][Full Text] [Related]
80. Computational evidence for structural consequences of kiteplatin damage on DNA. Mutter ST; Margiotta N; Papadia P; Platts JA J Biol Inorg Chem; 2015 Jan; 20(1):35-48. PubMed ID: 25377895 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]