These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 25111456)

  • 21. Examining the reliability of the flexor carpi radialis V-wave at different levels of muscle contraction.
    El Bouse AO; Gabriel DA; Tokuno CD
    J Electromyogr Kinesiol; 2013 Apr; 23(2):296-301. PubMed ID: 23158208
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of F-waves of motor unit action potentials activated during voluntary contraction.
    Yamada M
    Electromyogr Clin Neurophysiol; 2004; 44(1):29-34. PubMed ID: 15008022
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of sustained low-intensity contractions on supraspinal fatigue in human elbow flexor muscles.
    Søgaard K; Gandevia SC; Todd G; Petersen NT; Taylor JL
    J Physiol; 2006 Jun; 573(Pt 2):511-23. PubMed ID: 16556656
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Central and peripheral fatigue of the knee extensor muscles induced by electromyostimulation.
    Zory R; Boërio D; Jubeau M; Maffiuletti NA
    Int J Sports Med; 2005 Dec; 26(10):847-53. PubMed ID: 16320169
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Short-term strength training does not change cortical voluntary activation.
    Lee M; Gandevia SC; Carroll TJ
    Med Sci Sports Exerc; 2009 Jul; 41(7):1452-60. PubMed ID: 19516155
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Twitch potentiation induced by stimulated and voluntary isometric contractions at various torque levels in human knee extensor muscles.
    Miyamoto N; Yanai T; Kawakami Y
    Muscle Nerve; 2011 Mar; 43(3):360-6. PubMed ID: 21321952
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Factors influencing the relation between corticospinal output and muscle force during voluntary contractions.
    Gelli F; Del Santo F; Popa T; Mazzocchio R; Rossi A
    Eur J Neurosci; 2007 Jun; 25(11):3469-75. PubMed ID: 17553016
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spatial distribution of motor units recruited during electrical stimulation of the quadriceps muscle versus the femoral nerve.
    Rodriguez-Falces J; Maffiuletti NA; Place N
    Muscle Nerve; 2013 Nov; 48(5):752-61. PubMed ID: 24037807
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessement of quadriceps strength, endurance and fatigue in FSHD and CMT: benefits and limits of femoral nerve magnetic stimulation.
    Bachasson D; Temesi J; Bankole C; Lagrange E; Boutte C; Millet GY; Verges S; Levy P; Feasson L; Wuyam B
    Clin Neurophysiol; 2014 Feb; 125(2):396-405. PubMed ID: 24001968
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Decomposition-based quantitative electromyography: effect of force on motor unit potentials and motor unit number estimates.
    Boe SG; Stashuk DW; Brown WF; Doherty TJ
    Muscle Nerve; 2005 Mar; 31(3):365-73. PubMed ID: 15627267
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Firing rates of motor units in human vastus lateralis muscle during fatiguing isometric contractions.
    Adam A; De Luca CJ
    J Appl Physiol (1985); 2005 Jul; 99(1):268-80. PubMed ID: 16036904
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Test-retest reliability of v-wave responses in the soleus and gastrocnemius medialis.
    Solstad GM; Fimland MS; Helgerud J; Iversen VM; Hoff J
    J Clin Neurophysiol; 2011 Apr; 28(2):217-21. PubMed ID: 21399516
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Voluntary activation of human knee extensors measured using transcranial magnetic stimulation.
    Goodall S; Romer LM; Ross EZ
    Exp Physiol; 2009 Sep; 94(9):995-1004. PubMed ID: 19561142
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New insights into the potentiation of the first and second phases of the M-wave after voluntary contractions in the quadriceps muscle.
    Rodriguez-Falces J; Place N
    Muscle Nerve; 2017 Jan; 55(1):35-45. PubMed ID: 27171586
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spectral properties of myoelectric signals from different motor units in the leg extensor muscles.
    Wakeling JM; Rozitis AI
    J Exp Biol; 2004 Jun; 207(Pt 14):2519-28. PubMed ID: 15184523
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of maximal voluntary contraction on the amplitude of the compound muscle action potential: implications for the interpolated twitch technique.
    Berger MJ; Watson BV; Doherty TJ
    Muscle Nerve; 2010 Oct; 42(4):498-503. PubMed ID: 20734310
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evoked H-reflex and V-wave responses during maximal isometric, concentric, and eccentric muscle contraction.
    Duclay J; Martin A
    J Neurophysiol; 2005 Nov; 94(5):3555-62. PubMed ID: 16049144
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Activity-dependent depression of the recurrent discharge of human motoneurones after maximal voluntary contractions.
    Khan SI; Giesebrecht S; Gandevia SC; Taylor JL
    J Physiol; 2012 Oct; 590(19):4957-69. PubMed ID: 22907051
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Short-term immobilization after eccentric exercise. Part I: contractile properties.
    Sayers SP; Peters BT; Knight CA; Urso ML; Parkington J; Clarkson PM
    Med Sci Sports Exerc; 2003 May; 35(5):753-61. PubMed ID: 12750584
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Muscle inactivation: assessment of interpolated twitch technique.
    Behm DG; St-Pierre DM; Perez D
    J Appl Physiol (1985); 1996 Nov; 81(5):2267-73. PubMed ID: 8941554
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.