BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 25111589)

  • 21. Residual dipolar couplings as a tool to study molecular recognition of ubiquitin.
    Lakomek NA; Lange OF; Walter KF; Farès C; Egger D; Lunkenheimer P; Meiler J; Grubmüller H; Becker S; de Groot BL; Griesinger C
    Biochem Soc Trans; 2008 Dec; 36(Pt 6):1433-7. PubMed ID: 19021570
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mapping protein conformational energy landscapes using NMR and molecular simulation.
    Guerry P; Mollica L; Blackledge M
    Chemphyschem; 2013 Sep; 14(13):3046-58. PubMed ID: 23703956
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bioactive peptides: conformational studies of [Tyr4] cyclolinopeptide A.
    Saviano M; Rossi F; Filizola M; Isernia C; Di Blasio B; Benedetti E; Pedone C; Siemion IZ; Pedyczak A
    Biopolymers; 1995 Oct; 36(4):453-60. PubMed ID: 7578940
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Maximizing accuracy of RNA structure in refinement against residual dipolar couplings.
    Bergonzo C; Grishaev A
    J Biomol NMR; 2019 Apr; 73(3-4):117-139. PubMed ID: 31049778
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cyclic Peptide Design Guided by Residual Dipolar Couplings, J-Couplings, and Intramolecular Hydrogen Bond Analysis.
    Farley KA; Che Y; Navarro-Vázquez A; Limberakis C; Anderson D; Yan J; Shapiro M; Shanmugasundaram V; Gil RR
    J Org Chem; 2019 Apr; 84(8):4803-4813. PubMed ID: 30605335
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Solution and solid state structure of an aib-containing cyclodecapeptide inhibiting the cholate uptake in hepatocytes.
    Rossi F; Saviano M; Di Talia P; Di Blasio B; Pedone C; Zanotti G; Mosca M; Saviano G; Tancredi T; Ziegler K; Benedetti E
    Biopolymers; 1996; 40(5):465-78. PubMed ID: 9062069
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Accurate solution structures of proteins from X-ray data and a minimal set of NMR data: calmodulin-peptide complexes as examples.
    Bertini I; Kursula P; Luchinat C; Parigi G; Vahokoski J; Wilmanns M; Yuan J
    J Am Chem Soc; 2009 Apr; 131(14):5134-44. PubMed ID: 19317469
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution.
    Lange OF; Lakomek NA; Farès C; Schröder GF; Walter KF; Becker S; Meiler J; Grubmüller H; Griesinger C; de Groot BL
    Science; 2008 Jun; 320(5882):1471-5. PubMed ID: 18556554
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Conformational behaviour of a cyclolinopeptide A analogue: two-dimensional NMR study of cyclo(Pro1-Pro-Phe-Phe-Ac6c-Ile-ala-Val8).
    Mazzeo M; Isernia C; Rossi F; Saviano M; Pedone C; Paolillo L; Benedetti E; Pavone V
    J Pept Sci; 1995; 1(5):330-40. PubMed ID: 9223012
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Determination of the structure of oxidised Desulfovibrio africanus ferredoxin I by 1H NMR spectroscopy and comparison of its solution structure with its crystal structure.
    Davy SL; Osborne MJ; Moore GR
    J Mol Biol; 1998 Apr; 277(3):683-706. PubMed ID: 9533888
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tetrazole analogues of cyclolinopeptide A: synthesis, conformation, and biology.
    Kaczmarek K; Jankowski S; Siemion IZ; Wieczorek Z; Benedetti E; Di Lello P; Isernia C; Saviano M; Zabrocki J
    Biopolymers; 2002 May; 63(6):343-57. PubMed ID: 11920436
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular dynamics simulation in vacuo and in solution of cyclolinopeptide A: a conformational study.
    Saviano M; Aida M; Corongiu G
    Biopolymers; 1991 Jul; 31(8):1017-24. PubMed ID: 1782353
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Conformational analysis of cyclic peptides in solution.
    Kessler H; Bats JW; Wagner K; Will M
    Biopolymers; 1989 Jan; 28(1):385-95. PubMed ID: 2720115
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Redox-dependent structural differences in putidaredoxin derived from homologous structure refinement via residual dipolar couplings.
    Jain NU; Tjioe E; Savidor A; Boulie J
    Biochemistry; 2005 Jun; 44(25):9067-78. PubMed ID: 15966730
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cyclic beta-helical/beta-hairpin D,L-alpha-peptide: study of its folding properties and structure refinement using molecular dynamics.
    Meier K; van Gunsteren WF
    J Phys Chem A; 2010 Feb; 114(4):1852-9. PubMed ID: 20055405
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Various strategies of using residual dipolar couplings in NMR-driven protein docking: application to Lys48-linked di-ubiquitin and validation against 15N-relaxation data.
    van Dijk AD; Fushman D; Bonvin AM
    Proteins; 2005 Aug; 60(3):367-81. PubMed ID: 15937902
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Theoretical analysis of residual dipolar coupling patterns in regular secondary structures of proteins.
    Mascioni A; Veglia G
    J Am Chem Soc; 2003 Oct; 125(41):12520-6. PubMed ID: 14531696
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crystal structure and NMR conformation of a cyclic pseudotetrapeptide containing urethane backbone linkages.
    Parkinson GN; Wu Y; Fan P; Kohn J; Baum J; Berman HM
    Biopolymers; 1994 Mar; 34(3):403-14. PubMed ID: 8161712
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Anisotropic small amplitude Peptide plane dynamics in proteins from residual dipolar couplings.
    Bernadó P; Blackledge M
    J Am Chem Soc; 2004 Apr; 126(15):4907-20. PubMed ID: 15080696
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ligand-induced structural changes to maltodextrin-binding protein as studied by solution NMR spectroscopy.
    Evenäs J; Tugarinov V; Skrynnikov NR; Goto NK; Muhandiram R; Kay LE
    J Mol Biol; 2001 Jun; 309(4):961-74. PubMed ID: 11399072
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.