These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 25111614)

  • 1. Time and temperature effects on the digestive ripening of gold nanoparticles: is there a crossover from digestive ripening to Ostwald ripening?
    Sahu P; Prasad BL
    Langmuir; 2014 Sep; 30(34):10143-50. PubMed ID: 25111614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectroscopic and microscopic investigation of gold nanoparticle formation: ligand and temperature effects on rate and particle size.
    Sardar R; Shumaker-Parry JS
    J Am Chem Soc; 2011 Jun; 133(21):8179-90. PubMed ID: 21548572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of indium nanoparticles: digestive ripening under mild conditions.
    Cingarapu S; Yang Z; Sorensen CM; Klabunde KJ
    Inorg Chem; 2011 Jun; 50(11):5000-5. PubMed ID: 21520906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-temperature metallic alloying of copper and silver nanoparticles with gold nanoparticles through digestive ripening.
    Smetana AB; Klabunde KJ; Sorensen CM; Ponce AA; Mwale B
    J Phys Chem B; 2006 Feb; 110(5):2155-8. PubMed ID: 16471798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physical stability of nanosuspensions: investigation of the role of stabilizers on Ostwald ripening.
    Verma S; Kumar S; Gokhale R; Burgess DJ
    Int J Pharm; 2011 Mar; 406(1-2):145-52. PubMed ID: 21185926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Precise size control of hydrophobic gold nanoparticles using cooperative effect of refluxing ripening and seeding growth.
    Yang Y; Yan Y; Wang W; Li J
    Nanotechnology; 2008 Apr; 19(17):175603. PubMed ID: 21825676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heat- and electron-beam-induced transport of gold particles into silicon oxide and silicon studied by in situ high-resolution transmission electron microscopy.
    Biskupek J; Kaiser U; Falk F
    J Electron Microsc (Tokyo); 2008 Jun; 57(3):83-9. PubMed ID: 18504308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly monodisperse colloidal magnesium nanoparticles by room temperature digestive ripening.
    Kalidindi SB; Jagirdar BR
    Inorg Chem; 2009 May; 48(10):4524-9. PubMed ID: 19341306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monodisperse Ag, Au Nanoparticles via Solvated Metal Atom Dispersion and Digestive Ripening in Ionic Liquid.
    Sarkar S; Jagirdar BR
    Langmuir; 2024 Apr; 40(14):7620-7631. PubMed ID: 38526315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fine control of nanoparticle sizes and size distributions: temperature and ligand effects on the digestive ripening process.
    Sahu P; Prasad BL
    Nanoscale; 2013 Mar; 5(5):1768-71. PubMed ID: 23132110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intrinsic focusing of the particle size distribution in colloids containing nanocrystals of two different crystal phases.
    Voss B; Haase M
    ACS Nano; 2013 Dec; 7(12):11242-54. PubMed ID: 24206197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-dimensional nanoparticle self-assembly using plasma-induced Ostwald ripening.
    Tang J; Photopoulos P; Tserepi A; Tsoukalas D
    Nanotechnology; 2011 Jun; 22(23):235306. PubMed ID: 21483049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ostwald ripening of beta-carotene nanoparticles.
    Liu Y; Kathan K; Saad W; Prud'homme RK
    Phys Rev Lett; 2007 Jan; 98(3):036102. PubMed ID: 17358697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Digestive Ripening of Au Nanoparticles Using Multidentate Ligands.
    Sahu P; Shimpi J; Lee HJ; Lee TR; Prasad BL
    Langmuir; 2017 Feb; 33(8):1943-1950. PubMed ID: 28127959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct observations of oxygen-induced platinum nanoparticle ripening studied by in situ TEM.
    Simonsen SB; Chorkendorff I; Dahl S; Skoglundh M; Sehested J; Helveg S
    J Am Chem Soc; 2010 Jun; 132(23):7968-75. PubMed ID: 20481529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis, characterization, and self-assembly of protein lysozyme monolayer-stabilized gold nanoparticles.
    Yang T; Li Z; Wang L; Guo C; Sun Y
    Langmuir; 2007 Oct; 23(21):10533-8. PubMed ID: 17867715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solvent: A Key in Digestive Ripening for Monodisperse Au Nanoparticles.
    Wang P; Qi X; Zhang X; Wang T; Li Y; Zhang K; Zhao S; Zhou J; Fu Y
    Nanoscale Res Lett; 2017 Dec; 12(1):25. PubMed ID: 28070836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure function attributes of gold nanoparticle vaccine association: effect of particle size and association temperature.
    Barhate GA; Gaikwad SM; Jadhav SS; Pokharkar VB
    Int J Pharm; 2014 Aug; 471(1-2):439-48. PubMed ID: 24907644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sintering of catalytic nanoparticles: particle migration or Ostwald ripening?
    Hansen TW; Delariva AT; Challa SR; Datye AK
    Acc Chem Res; 2013 Aug; 46(8):1720-30. PubMed ID: 23634641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.