BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 25111627)

  • 1. Serine versus threonine glycosylation with α-O-GalNAc: unexpected selectivity in their molecular recognition with lectins.
    Madariaga D; Martínez-Sáez N; Somovilla VJ; García-García L; Berbis MÁ; Valero-Gónzalez J; Martín-Santamaría S; Hurtado-Guerrero R; Asensio JL; Jiménez-Barbero J; Avenoza A; Busto JH; Corzana F; Peregrina JM
    Chemistry; 2014 Sep; 20(39):12616-27. PubMed ID: 25111627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of tumor-associated glycopeptides by lectins: the peptide context modulates carbohydrate recognition.
    Madariaga D; Martínez-Sáez N; Somovilla VJ; Coelho H; Valero-González J; Castro-López J; Asensio JL; Jiménez-Barbero J; Busto JH; Avenoza A; Marcelo F; Hurtado-Guerrero R; Corzana F; Peregrina JM
    ACS Chem Biol; 2015 Mar; 10(3):747-56. PubMed ID: 25457745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deciphering the Non-Equivalence of Serine and Threonine O-Glycosylation Points: Implications for Molecular Recognition of the Tn Antigen by an anti-MUC1 Antibody.
    Martínez-Sáez N; Castro-López J; Valero-González J; Madariaga D; Compañón I; Somovilla VJ; Salvadó M; Asensio JL; Jiménez-Barbero J; Avenoza A; Busto JH; Bernardes GJ; Peregrina JM; Hurtado-Guerrero R; Corzana F
    Angew Chem Int Ed Engl; 2015 Aug; 54(34):9830-4. PubMed ID: 26118689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of the fine specificity of Tn-binding proteins using synthetic glycopeptide epitopes and a biosensor based on surface plasmon resonance spectroscopy.
    Osinaga E; Bay S; Tello D; Babino A; Pritsch O; Assemat K; Cantacuzene D; Nakada H; Alzari P
    FEBS Lett; 2000 Mar; 469(1):24-8. PubMed ID: 10708749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An efficient approach for the characterization of mucin-type glycopeptides: the effect of O-glycosylation on the conformation of synthetic mucin peptides.
    Hashimoto R; Fujitani N; Takegawa Y; Kurogochi M; Matsushita T; Naruchi K; Ohyabu N; Hinou H; Gao XD; Manri N; Satake H; Kaneko A; Sakamoto T; Nishimura S
    Chemistry; 2011 Feb; 17(8):2393-404. PubMed ID: 21264968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Delineating binding modes of Gal/GalNAc and structural elements of the molecular recognition of tumor-associated mucin glycopeptides by the human macrophage galactose-type lectin.
    Marcelo F; Garcia-Martin F; Matsushita T; Sardinha J; Coelho H; Oude-Vrielink A; Koller C; André S; Cabrita EJ; Gabius HJ; Nishimura S; Jiménez-Barbero J; Cañada FJ
    Chemistry; 2014 Dec; 20(49):16147-55. PubMed ID: 25324212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rational design of a Tn antigen mimic.
    Corzana F; Busto JH; Marcelo F; de Luis MG; Asensio JL; Martín-Santamaría S; Sáenz Y; Torres C; Jiménez-Barbero J; Avenoza A; Peregrina JM
    Chem Commun (Camb); 2011 May; 47(18):5319-21. PubMed ID: 21451866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monoclonal antibodies against the Tn-specific isolectin B4 from Vicia villosa seeds: characterization of the epitope of the blocking antibody VV34.
    Medeiros A; Berois N; Balter H; Robles A; Perez-Payá E; Gimenez A; Calvete JJ; Osinaga E
    Hybrid Hybridomics; 2004 Feb; 23(1):39-44. PubMed ID: 15000847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the carbohydrate-binding specificities of seven N-acetyl-D-galactosamine-recognizing lectins.
    Piller V; Piller F; Cartron JP
    Eur J Biochem; 1990 Jul; 191(2):461-6. PubMed ID: 2384093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Recognition of GalNAc in Mucin-Type O-Glycosylation.
    Sanz-Martinez I; Pereira S; Merino P; Corzana F; Hurtado-Guerrero R
    Acc Chem Res; 2023 Mar; 56(5):548-560. PubMed ID: 36815693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A double diastereoselective Michael-type addition as an entry to conformationally restricted tn antigen mimics.
    Aydillo C; Navo CD; Busto JH; Corzana F; Zurbano MM; Avenoza A; Peregrina JM
    J Org Chem; 2013 Nov; 78(21):10968-77. PubMed ID: 24083620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on the interactions between glycosylated beta3-peptides and the lectin Vicia villosa by saturation transfer difference NMR spectroscopy.
    Kaszowska M; Norgren AS; Arvidson PI; Sandström C
    Carbohydr Res; 2009 Dec; 344(18):2577-80. PubMed ID: 19863951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding studies of alpha-GalNAc-specific lectins to the alpha-GalNAc (Tn-antigen) form of porcine submaxillary mucin and its smaller fragments.
    Dam TK; Gerken TA; Cavada BS; Nascimento KS; Moura TR; Brewer CF
    J Biol Chem; 2007 Sep; 282(38):28256-63. PubMed ID: 17652089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unexpected tolerance of glycosylation by UDP-GalNAc:polypeptide alpha-N-acetylgalactosaminyltransferase revealed by electron capture dissociation mass spectrometry: carbohydrate as potential protective groups.
    Yoshimura Y; Matsushita T; Fujitani N; Takegawa Y; Fujihira H; Naruchi K; Gao XD; Manri N; Sakamoto T; Kato K; Hinou H; Nishimura S
    Biochemistry; 2010 Jul; 49(28):5929-41. PubMed ID: 20540529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the structural specificity of Tn antigen for its receptor: an NMR solution study.
    D'Amelio N; Coslovi A; Rossi M; Uggeri F; Paoletti S
    Carbohydr Res; 2012 Apr; 351():114-20. PubMed ID: 22341503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The nature and sequence of the amino acid aglycone strongly modulates the conformation and dynamics effects of Tn antigen's clusters.
    Corzana F; Busto JH; García de Luis M; Jiménez-Barbero J; Avenoza A; Peregrina JM
    Chemistry; 2009; 15(15):3863-74. PubMed ID: 19229941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular cloning and expression of cDNA encoding human macrophage C-type lectin. Its unique carbohydrate binding specificity for Tn antigen.
    Suzuki N; Yamamoto K; Toyoshima S; Osawa T; Irimura T
    J Immunol; 1996 Jan; 156(1):128-35. PubMed ID: 8598452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational consequences of protein glycosylation: preparation of O-mannosyl serine and threonine building blocks, and their incorporation into glycopeptide sequences derived from alpha-dystroglycan.
    Liu M; Borgert A; Barany G; Live D
    Biopolymers; 2008; 90(3):358-68. PubMed ID: 17868094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Serine versus threonine glycosylation: the methyl group causes a drastic alteration on the carbohydrate orientation and on the surrounding water shell.
    Corzana F; Busto JH; Jiménez-Osés G; García de Luis M; Asensio JL; Jiménez-Barbero J; Peregrina JM; Avenoza A
    J Am Chem Soc; 2007 Aug; 129(30):9458-67. PubMed ID: 17616194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular recognition of β-O-GlcNAc glycopeptides by a lectin-like receptor: binding modulation by the underlying Ser or Thr amino acids.
    Corzana F; Fernández-Tejada A; Busto JH; Joshi G; Davis AP; Jiménez-Barbero J; Avenoza A; Peregrina JM
    Chembiochem; 2011 Jan; 12(1):110-7. PubMed ID: 21181845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.