These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 25111669)

  • 1. Synthesis of cyclic imides from nitriles and diols using hydrogen transfer as a substrate-activating strategy.
    Kim J; Hong SH
    Org Lett; 2014 Sep; 16(17):4404-7. PubMed ID: 25111669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Copper-catalyzed oxidation of arene-fused cyclic amines to cyclic imides.
    Yan X; Fang K; Liu H; Xi C
    Chem Commun (Camb); 2013 Nov; 49(90):10650-2. PubMed ID: 24100546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Versatile and sustainable synthesis of cyclic imides from dicarboxylic acids and amines by Nb2O5 as a base-tolerant heterogeneous Lewis acid catalyst.
    Ali MA; Siddiki SM; Kon K; Hasegawa J; Shimizu K
    Chemistry; 2014 Oct; 20(44):14256-60. PubMed ID: 25225033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of cyclic imides from simple diols.
    Zhang J; Senthilkumar M; Ghosh SC; Hong SH
    Angew Chem Int Ed Engl; 2010 Aug; 49(36):6391-5. PubMed ID: 20661975
    [No Abstract]   [Full Text] [Related]  

  • 5. Ruthenium-catalyzed redox-neutral and single-step amide synthesis from alcohol and nitrile with complete atom economy.
    Kang B; Fu Z; Hong SH
    J Am Chem Soc; 2013 Aug; 135(32):11704-7. PubMed ID: 23915114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemoselective hydrogenation of imides catalyzed by Cp*Ru(PN) complexes and its application to the asymmetric synthesis of paroxetine.
    Ito M; Sakaguchi A; Kobayashi C; Ikariya T
    J Am Chem Soc; 2007 Jan; 129(2):290-1. PubMed ID: 17212405
    [No Abstract]   [Full Text] [Related]  

  • 7. Ag- and Au-catalyzed addition of alcohols to ynimides: β-regioselective carbonylation and production of oxazoles.
    Sueda T; Kawada A; Urashi Y; Teno N
    Org Lett; 2013 Apr; 15(7):1560-3. PubMed ID: 23496249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly practical synthesis of nitriles and heterocycles from alcohols under mild conditions by aerobic double dehydrogenative catalysis.
    Yin W; Wang C; Huang Y
    Org Lett; 2013 Apr; 15(8):1850-3. PubMed ID: 23560642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative amide synthesis directly from alcohols with amines.
    Chen C; Hong SH
    Org Biomol Chem; 2011 Jan; 9(1):20-6. PubMed ID: 21063590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CpIr complex-catalyzed N-heterocyclization of primary amines with diols: a new catalytic system for environmentally benign synthesis of cyclic amines.
    Fujita K; Fujii T; Yamaguchi R
    Org Lett; 2004 Sep; 6(20):3525-8. PubMed ID: 15387539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gold-catalyzed synthesis of benzil derivatives and α-keto imides via oxidation of alkynes.
    Xu CF; Xu M; Jia YX; Li CY
    Org Lett; 2011 Mar; 13(6):1556-9. PubMed ID: 21332143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of Cyclic Imides by Acceptorless Dehydrogenative Coupling of Diols and Amines Catalyzed by a Manganese Pincer Complex.
    Espinosa-Jalapa NA; Kumar A; Leitus G; Diskin-Posner Y; Milstein D
    J Am Chem Soc; 2017 Aug; 139(34):11722-11725. PubMed ID: 28795820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of α,β-Unsaturated N-Sulfonyl Imides through Zinc-Catalyzed Intermolecular Oxidation of N-Sulfonyl Ynamides.
    Pan F; Shu C; Ping YF; Pan YF; Ruan PP; Fei QR; Ye LW
    J Org Chem; 2015 Oct; 80(20):10009-15. PubMed ID: 26422641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidation of primary alcohols to methyl esters by hydrogen transfer.
    Owston NA; Parker AJ; Williams JM
    Chem Commun (Camb); 2008 Feb; (5):624-5. PubMed ID: 18209810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A practical and benign synthesis of primary amines through ruthenium-catalyzed reduction of nitriles.
    Enthaler S; Junge K; Addis D; Erre G; Beller M
    ChemSusChem; 2008; 1(12):1006-10. PubMed ID: 19034895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Base-catalyzed bifunctional addition to amides and imides at low temperature. A new pathway for carbonyl hydrogenation.
    John JM; Takebayashi S; Dabral N; Miskolzie M; Bergens SH
    J Am Chem Soc; 2013 Jun; 135(23):8578-84. PubMed ID: 23688123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ruthenium-catalyzed nitro and nitrile compounds coupling with alcohols: alternative route for N-substituted amine synthesis.
    Cui X; Zhang Y; Shi F; Deng Y
    Chemistry; 2011 Feb; 17(9):2587-91. PubMed ID: 21271621
    [No Abstract]   [Full Text] [Related]  

  • 18. Copper/TEMPO catalysed synthesis of nitriles from aldehydes or alcohols using aqueous ammonia and with air as the oxidant.
    Dornan LM; Cao Q; Flanagan JC; Crawford JJ; Cook MJ; Muldoon MJ
    Chem Commun (Camb); 2013 Jul; 49(54):6030-2. PubMed ID: 23719631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dehydrogenation as a substrate-activating strategy in homogeneous transition-metal catalysis.
    Dobereiner GE; Crabtree RH
    Chem Rev; 2010 Feb; 110(2):681-703. PubMed ID: 19938813
    [No Abstract]   [Full Text] [Related]  

  • 20. Synthesis of imides, N-acyl vinylogous carbamates and ureas, and nitriles by oxidation of amides and amines with Dess-Martin periodinane.
    Nicolaou KC; Mathison CJ
    Angew Chem Int Ed Engl; 2005 Sep; 44(37):5992-7. PubMed ID: 16124020
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 14.