These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 25111712)

  • 1. Bandgap engineering through nanocrystalline magnetic alloy grafting on reduced graphene oxide.
    De D; Chakraborty M; Majumdar S; Giri S
    Phys Chem Chem Phys; 2014 Sep; 16(36):19661-7. PubMed ID: 25111712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interfacial engineering in graphene bandgap.
    Xu X; Liu C; Sun Z; Cao T; Zhang Z; Wang E; Liu Z; Liu K
    Chem Soc Rev; 2018 May; 47(9):3059-3099. PubMed ID: 29513306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly hydrogenated graphene via active hydrogen reduction of graphene oxide in the aqueous phase at room temperature.
    Sofer Z; Jankovský O; Šimek P; Soferová L; Sedmidubský D; Pumera M
    Nanoscale; 2014 Feb; 6(4):2153-60. PubMed ID: 24366534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence of nanocrystalline semiconducting graphene monoxide during thermal reduction of graphene oxide in vacuum.
    Mattson EC; Pu H; Cui S; Schofield MA; Rhim S; Lu G; Nasse MJ; Ruoff RS; Weinert M; Gajdardziska-Josifovska M; Chen J; Hirschmugl CJ
    ACS Nano; 2011 Dec; 5(12):9710-7. PubMed ID: 22098501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene/g-C3N4 bilayer: considerable band gap opening and effective band structure engineering.
    Li X; Dai Y; Ma Y; Han S; Huang B
    Phys Chem Chem Phys; 2014 Mar; 16(9):4230-5. PubMed ID: 24452306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate-induced bandgap opening in epitaxial graphene.
    Zhou SY; Gweon GH; Fedorov AV; First PN; de Heer WA; Lee DH; Guinea F; Castro Neto AH; Lanzara A
    Nat Mater; 2007 Oct; 6(10):770-5. PubMed ID: 17828279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An environment-friendly preparation of reduced graphene oxide nanosheets via amino acid.
    Chen D; Li L; Guo L
    Nanotechnology; 2011 Aug; 22(32):325601. PubMed ID: 21757797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Obtaining high localized spin magnetic moments by fluorination of reduced graphene oxide.
    Feng Q; Tang N; Liu F; Cao Q; Zheng W; Ren W; Wan X; Du Y
    ACS Nano; 2013 Aug; 7(8):6729-34. PubMed ID: 23869665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diazonium functionalized graphene: microstructure, electric, and magnetic properties.
    Huang P; Jing L; Zhu H; Gao X
    Acc Chem Res; 2013 Jan; 46(1):43-52. PubMed ID: 23143937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Focusing on energy and optoelectronic applications: a journey for graphene and graphene oxide at large scale.
    Wan X; Huang Y; Chen Y
    Acc Chem Res; 2012 Apr; 45(4):598-607. PubMed ID: 22280410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Room temperature d
    Pimachev A; Rimal G; Nielsen RD; Tang J; Dahnovsky Y
    Phys Chem Chem Phys; 2018 Dec; 20(47):29804-29810. PubMed ID: 30465566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning the magnetic and transport properties of metal adsorbed graphene by co-adsorption with 1,2-dichlorobenzene.
    Zhang YH; Zhou KG; Xie KF; Zhang HL; Peng Y; Wang CW
    Phys Chem Chem Phys; 2012 Sep; 14(33):11626-32. PubMed ID: 22820954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gate-induced insulating state in bilayer graphene devices.
    Oostinga JB; Heersche HB; Liu X; Morpurgo AF; Vandersypen LM
    Nat Mater; 2008 Feb; 7(2):151-7. PubMed ID: 18059274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designed CVD growth of graphene via process engineering.
    Yan K; Fu L; Peng H; Liu Z
    Acc Chem Res; 2013 Oct; 46(10):2263-74. PubMed ID: 23869401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From graphene oxide to pristine graphene: revealing the inner workings of the full structural restoration.
    Rozada R; Paredes JI; López MJ; Villar-Rodil S; Cabria I; Alonso JA; Martínez-Alonso A; Tascón JM
    Nanoscale; 2015 Feb; 7(6):2374-90. PubMed ID: 25563664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An effective non-covalent grafting approach to functionalize individually dispersed reduced graphene oxide sheets with high grafting density, solubility and electrical conductivity.
    Wang H; Bi SG; Ye YS; Xue Y; Xie XL; Mai YW
    Nanoscale; 2015 Feb; 7(8):3548-57. PubMed ID: 25630871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly conducting graphene sheets and Langmuir-Blodgett films.
    Li X; Zhang G; Bai X; Sun X; Wang X; Wang E; Dai H
    Nat Nanotechnol; 2008 Sep; 3(9):538-42. PubMed ID: 18772914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature tuned defect induced magnetism in reduced graphene oxide.
    Khurana G; Kumar N; Kotnala RK; Nautiyal T; Katiyar RS
    Nanoscale; 2013 Apr; 5(8):3346-51. PubMed ID: 23467692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Semiconducting graphene: converting graphene from semimetal to semiconductor.
    Lu G; Yu K; Wen Z; Chen J
    Nanoscale; 2013 Feb; 5(4):1353-68. PubMed ID: 23318353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First-principles study of the structure and band structure of Ga2Se3.
    Huang GY; Abdul-Jabbar NM; Wirth BD
    J Phys Condens Matter; 2013 Jun; 25(22):225503. PubMed ID: 23673396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.