These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 2511195)
1. The streptococcal flavoprotein NADH oxidase. I. Evidence linking NADH oxidase and NADH peroxidase cysteinyl redox centers. Ahmed SA; Claiborne A J Biol Chem; 1989 Nov; 264(33):19856-63. PubMed ID: 2511195 [TBL] [Abstract][Full Text] [Related]
2. Catalytic properties of streptococcal NADH oxidase containing artificial flavins. Ahmed SA; Claiborne A J Biol Chem; 1992 Dec; 267(36):25822-9. PubMed ID: 1464596 [TBL] [Abstract][Full Text] [Related]
3. Molecular cloning and analysis of the gene encoding the NADH oxidase from Streptococcus faecalis 10C1. Comparison with NADH peroxidase and the flavoprotein disulfide reductases. Ross RP; Claiborne A J Mol Biol; 1992 Oct; 227(3):658-71. PubMed ID: 1404382 [TBL] [Abstract][Full Text] [Related]
4. Active-site structural comparison of streptococcal NADH peroxidase and NADH oxidase. Reconstitution with artificial flavins. Ahmed SA; Claiborne A J Biol Chem; 1992 Feb; 267(6):3832-40. PubMed ID: 1740431 [TBL] [Abstract][Full Text] [Related]
5. The streptococcal flavoprotein NADH oxidase. II. Interactions of pyridine nucleotides with reduced and oxidized enzyme forms. Ahmed SA; Claiborne A J Biol Chem; 1989 Nov; 264(33):19863-70. PubMed ID: 2511196 [TBL] [Abstract][Full Text] [Related]
6. The non-flavin redox center of the streptococcal NADH peroxidase. II. Evidence for a stabilized cysteine-sulfenic acid. Poole LB; Claiborne A J Biol Chem; 1989 Jul; 264(21):12330-8. PubMed ID: 2501303 [TBL] [Abstract][Full Text] [Related]
7. Evidence for a single active-site cysteinyl residue in the streptococcal NADH peroxidase. Poole LB; Claiborne A Biochem Biophys Res Commun; 1988 May; 153(1):261-6. PubMed ID: 3132163 [TBL] [Abstract][Full Text] [Related]
8. Role of cysteine 337 and cysteine 340 in flavoprotein that functions as NADH oxidase from Amphibacillus xylanus studied by site-directed mutagenesis. Ohnishi K; Niimura Y; Hidaka M; Masaki H; Suzuki H; Uozumi T; Nishino T J Biol Chem; 1995 Mar; 270(11):5812-7. PubMed ID: 7726998 [TBL] [Abstract][Full Text] [Related]
9. Interactions of pyridine nucleotides with redox forms of the flavin-containing NADH peroxidase from Streptococcus faecalis. Poole LB; Claiborne A J Biol Chem; 1986 Nov; 261(31):14525-33. PubMed ID: 3095321 [TBL] [Abstract][Full Text] [Related]
10. Amphibacillus xylanus NADH oxidase and Salmonella typhimurium alkyl-hydroperoxide reductase flavoprotein components show extremely high scavenging activity for both alkyl hydroperoxide and hydrogen peroxide in the presence of S. typhimurium alkyl-hydroperoxide reductase 22-kDa protein component. Niimura Y; Poole LB; Massey V J Biol Chem; 1995 Oct; 270(43):25645-50. PubMed ID: 7592740 [TBL] [Abstract][Full Text] [Related]
11. The non-flavin redox center of the streptococcal NADH peroxidase. I. Thiol reactivity and redox behavior in the presence of urea. Poole LB; Claiborne A J Biol Chem; 1989 Jul; 264(21):12322-9. PubMed ID: 2501302 [TBL] [Abstract][Full Text] [Related]
12. A hydrogen peroxide-forming NADH oxidase that functions as an alkyl hydroperoxide reductase in Amphibacillus xylanus. Niimura Y; Nishiyama Y; Saito D; Tsuji H; Hidaka M; Miyaji T; Watanabe T; Massey V J Bacteriol; 2000 Sep; 182(18):5046-51. PubMed ID: 10960086 [TBL] [Abstract][Full Text] [Related]
13. Analysis of the kinetic and redox properties of NADH peroxidase C42S and C42A mutants lacking the cysteine-sulfenic acid redox center. Parsonage D; Claiborne A Biochemistry; 1995 Jan; 34(2):435-41. PubMed ID: 7819235 [TBL] [Abstract][Full Text] [Related]
14. Heterogeneity among the flavin-containing NADH peroxidases of group D streptococci. Analysis of the enzyme from Streptococcus faecalis ATCC 9790. Miller H; Poole LB; Claiborne A J Biol Chem; 1990 Jun; 265(17):9857-63. PubMed ID: 2161844 [TBL] [Abstract][Full Text] [Related]
15. Purification and analysis of a flavoprotein functional as NADH oxidase from Amphibacillus xylanus overexpressed in Escherichia coli. Ohnishi K; Niimura Y; Yokoyama K; Hidaka M; Masaki H; Uchimura T; Suzuki H; Uozumi T; Kozaki M; Komagata K; Nishino T J Biol Chem; 1994 Dec; 269(50):31418-23. PubMed ID: 7989308 [TBL] [Abstract][Full Text] [Related]
16. Oxygen reactivity of an NADH oxidase C42S mutant: evidence for a C(4a)-peroxyflavin intermediate and a rate-limiting conformational change. Mallett TC; Claiborne A Biochemistry; 1998 Jun; 37(24):8790-802. PubMed ID: 9628741 [TBL] [Abstract][Full Text] [Related]
17. Purification and characterisation of NADH oxidase from Thermus aquaticus YT-1 and evidence that it functions in a peroxide-reduction system. Toomey D; Mayhew SG Eur J Biochem; 1998 Feb; 251(3):935-45. PubMed ID: 9490070 [TBL] [Abstract][Full Text] [Related]
18. A flavoprotein functional as NADH oxidase from Amphibacillus xylanus Ep01: purification and characterization of the enzyme and structural analysis of its gene. Niimura Y; Ohnishi K; Yarita Y; Hidaka M; Masaki H; Uchimura T; Suzuki H; Kozaki M; Uozumi T J Bacteriol; 1993 Dec; 175(24):7945-50. PubMed ID: 8253683 [TBL] [Abstract][Full Text] [Related]