BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 25112051)

  • 1. Analysis of electrode shift effects on wavelet features embedded in a myoelectric pattern recognition system.
    Fontana JM; Chiu AW
    Assist Technol; 2014; 26(2):71-80. PubMed ID: 25112051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving myoelectric pattern recognition robustness to electrode shift by changing interelectrode distance and electrode configuration.
    Young AJ; Hargrove LJ; Kuiken TA
    IEEE Trans Biomed Eng; 2012 Mar; 59(3):645-52. PubMed ID: 22147289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward attenuating the impact of arm positions on electromyography pattern-recognition based motion classification in transradial amputees.
    Geng Y; Zhou P; Li G
    J Neuroeng Rehabil; 2012 Oct; 9():74. PubMed ID: 23036049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of electrode size and orientation on the sensitivity of myoelectric pattern recognition systems to electrode shift.
    Young AJ; Hargrove LJ; Kuiken TA
    IEEE Trans Biomed Eng; 2011 Sep; 58(9):2537-44. PubMed ID: 21659017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial correlation of high density EMG signals provides features robust to electrode number and shift in pattern recognition for myocontrol.
    Stango A; Negro F; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2015 Mar; 23(2):189-98. PubMed ID: 25389242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrode Density Affects the Robustness of Myoelectric Pattern Recognition System With and Without Electrode Shift.
    He J; Sheng X; Zhu X; Jiang N
    IEEE J Biomed Health Inform; 2019 Jan; 23(1):156-163. PubMed ID: 29994645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving robustness against electrode shift of high density EMG for myoelectric control through common spatial patterns.
    Pan L; Zhang D; Jiang N; Sheng X; Zhu X
    J Neuroeng Rehabil; 2015 Dec; 12():110. PubMed ID: 26631105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reducing classification accuracy degradation of pattern recognition based myoelectric control caused by electrode shift using a high density electrode array.
    Boschmann A; Platzner M
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4324-7. PubMed ID: 23366884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of interelectrode distance on the robustness of myoelectric pattern recognition systems.
    Young AJ; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():3873-9. PubMed ID: 22255185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving the Robustness of Myoelectric Pattern Recognition for Upper Limb Prostheses by Covariate Shift Adaptation.
    Vidovic MM; Hwang HJ; Amsuss S; Hahne JM; Farina D; Muller KR
    IEEE Trans Neural Syst Rehabil Eng; 2016 Sep; 24(9):961-970. PubMed ID: 26513794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Principal components analysis preprocessing for improved classification accuracies in pattern-recognition-based myoelectric control.
    Hargrove LJ; Li G; Englehart KB; Hudgins BS
    IEEE Trans Biomed Eng; 2009 May; 56(5):1407-14. PubMed ID: 19473932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of stability of time-domain features for electromyographic pattern recognition.
    Tkach D; Huang H; Kuiken TA
    J Neuroeng Rehabil; 2010 May; 7():21. PubMed ID: 20492713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining Improved Gray-Level Co-Occurrence Matrix With High Density Grid for Myoelectric Control Robustness to Electrode Shift.
    He J; Zhu X
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1539-1548. PubMed ID: 28026779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High density electromyography data of normally limbed and transradial amputee subjects for multifunction prosthetic control.
    Daley H; Englehart K; Hargrove L; Kuruganti U
    J Electromyogr Kinesiol; 2012 Jun; 22(3):478-84. PubMed ID: 22269773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Principal components analysis preprocessing to reduce controller delays in pattern recognition based myoelectric control.
    Hargrove L; Scheme E; Englehart K; Hudgins B
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6512-5. PubMed ID: 18003517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving Myoelectric Pattern Recognition Robustness to Electrode Shift by Autoencoder.
    Lv B; Sheng X; Zhu X
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5652-5655. PubMed ID: 30441618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of wavelet packet transform on myoelectric pattern recognition for upper limb rehabilitation after stroke.
    Wang D; Zhang X; Chen X; Zhou P
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3578-81. PubMed ID: 25570764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving transient state myoelectric signal recognition in hand movement classification using gyroscopes.
    Boschmann A; Nofen B; Platzner M
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6035-8. PubMed ID: 24111115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface myoelectric signal classification for prostheses control.
    Al-Assaf Y; Al-Nashash H
    J Med Eng Technol; 2005; 29(5):203-7. PubMed ID: 16126579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EMG classification using wavelet functions to determine muscle contraction.
    Sharma T; Veer K
    J Med Eng Technol; 2016; 40(3):99-105. PubMed ID: 26942656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.