BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 25112051)

  • 21. Surface myoelectric signal classification for prostheses control.
    Al-Assaf Y; Al-Nashash H
    J Med Eng Technol; 2005; 29(5):203-7. PubMed ID: 16126579
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A wavelet-based continuous classification scheme for multifunction myoelectric control.
    Englehart K; Hudgins B; Parker PA
    IEEE Trans Biomed Eng; 2001 Mar; 48(3):302-11. PubMed ID: 11327498
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Channel and feature selection in multifunction myoelectric control.
    Khushaba RN; Al-Jumaily A
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5182-5. PubMed ID: 18003175
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Current Trends and Confounding Factors in Myoelectric Control: Limb Position and Contraction Intensity.
    Campbell E; Phinyomark A; Scheme E
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32183215
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of the weight actions of the hand prosthesis on the performance of pattern recognition based myoelectric control: preliminary study.
    Cipriani C; Sassu R; Controzzi M; Carrozza MC
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1620-3. PubMed ID: 22254633
    [TBL] [Abstract][Full Text] [Related]  

  • 26. EMG feature assessment for myoelectric pattern recognition and channel selection: a study with incomplete spinal cord injury.
    Liu J; Li X; Li G; Zhou P
    Med Eng Phys; 2014 Jul; 36(7):975-80. PubMed ID: 24844608
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Real-time and offline performance of pattern recognition myoelectric control using a generic electrode grid with targeted muscle reinnervation patients.
    Tkach DC; Young AJ; Smith LH; Rouse EJ; Hargrove LJ
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):727-34. PubMed ID: 24760931
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Residuals of autoregressive model providing additional information for feature extraction of pattern recognition-based myoelectric control.
    Pan L; Zhang D; Sheng X; Zhu X
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():7270-3. PubMed ID: 26737970
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A multifunctional prosthesis control system based on time series identification of EMG signals using microprocessors.
    Graupe D; Beex AA; Monlux WJ; Magnussen I
    Bull Prosthet Res; 1977; 10(27):4-16. PubMed ID: 603818
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pattern recognition control of multifunction myoelectric prostheses by patients with congenital transradial limb defects: a preliminary study.
    Kryger M; Schultz AE; Kuiken T
    Prosthet Orthot Int; 2011 Dec; 35(4):395-401. PubMed ID: 21960053
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Classification of Multiple Finger Motions During Dynamic Upper Limb Movements.
    Yang D; Yang W; Huang Q; Liu H
    IEEE J Biomed Health Inform; 2017 Jan; 21(1):134-141. PubMed ID: 26469791
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of time on EMG classification of hand motions in able-bodied and transradial amputees.
    Waris A; Niazi IK; Jamil M; Gilani O; Englehart K; Jensen W; Shafique M; Kamavuako EN
    J Electromyogr Kinesiol; 2018 Jun; 40():72-80. PubMed ID: 29689443
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced robustness of myoelectric pattern recognition to across-day variation through invariant feature extraction.
    Liu J; Zhang D; Sheng X; Zhu X
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():7262-5. PubMed ID: 26737968
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Correlation analysis of electromyogram signals for multiuser myoelectric interfaces.
    Khushaba RN
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):745-55. PubMed ID: 24760933
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improved Prosthetic Control Based on Myoelectric Pattern Recognition via Wavelet-Based De-Noising.
    Maier J; Naber A; Ortiz-Catalan M
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):506-514. PubMed ID: 29432116
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A supervised feature projection for real-time multifunction myoelectric hand control.
    Chu JU; Moon I; Mun MS
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2417-20. PubMed ID: 17945714
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improved High-Density Myoelectric Pattern Recognition Control Against Electrode Shift Using Data Augmentation and Dilated Convolutional Neural Network.
    Wu L; Zhang X; Wang K; Chen X; Chen X
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):2637-2646. PubMed ID: 33052847
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Resolving the limb position effect in myoelectric pattern recognition.
    Fougner A; Scheme E; Chan AD; Englehart K; Stavdahl O
    IEEE Trans Neural Syst Rehabil Eng; 2011 Dec; 19(6):644-51. PubMed ID: 21846608
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A preliminary investigation of the effect of force variation for myoelectric control of hand prosthesis.
    Al-Timemy AH; Bugmann G; Escudero J; Outram N
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5758-61. PubMed ID: 24111046
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of EMG pattern recognition for upper limb prosthesis control: a case study in comparison with direct myoelectric control.
    Resnik L; Huang HH; Winslow A; Crouch DL; Zhang F; Wolk N
    J Neuroeng Rehabil; 2018 Mar; 15(1):23. PubMed ID: 29544501
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.