BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 25112225)

  • 1. Detoxification of furfural in Corynebacterium glutamicum under aerobic and anaerobic conditions.
    Tsuge Y; Hori Y; Kudou M; Ishii J; Hasunuma T; Kondo A
    Appl Microbiol Biotechnol; 2014 Oct; 98(20):8675-83. PubMed ID: 25112225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FudC, a protein primarily responsible for furfural detoxification in Corynebacterium glutamicum.
    Tsuge Y; Kudou M; Kawaguchi H; Ishii J; Hasunuma T; Kondo A
    Appl Microbiol Biotechnol; 2016 Mar; 100(6):2685-92. PubMed ID: 26541332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo detoxification of furfural during lipid production by the oleaginous yeast Trichosporon fermentans.
    Huang C; Wu H; Smith TJ; Liu ZJ; Lou WY; Zong MH
    Biotechnol Lett; 2012 Sep; 34(9):1637-42. PubMed ID: 22648683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Furfural degradation by filamentous fungus Amorphotheca resinae ZN1].
    Wang X; Zhang J; Xin X; Bao J
    Sheng Wu Gong Cheng Xue Bao; 2012 Sep; 28(9):1070-9. PubMed ID: 23289309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycerol supplementation of the growth medium enhances in situ detoxification of furfural by Clostridium beijerinckii during butanol fermentation.
    Ujor V; Agu CV; Gopalan V; Ezeji TC
    Appl Microbiol Biotechnol; 2014; 98(14):6511-21. PubMed ID: 24839212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biotransformation of furfural and 5-hydroxymethyl furfural (HMF) by Clostridium acetobutylicum ATCC 824 during butanol fermentation.
    Zhang Y; Han B; Ezeji TC
    N Biotechnol; 2012 Feb; 29(3):345-51. PubMed ID: 21925629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extreme furfural tolerance of a soil bacterium Enterobacter cloacae GGT036.
    Choi SY; Gong G; Park HS; Um Y; Sim SJ; Woo HM
    J Biotechnol; 2015 Jan; 193():11-3. PubMed ID: 25444876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tolerance and transcriptional analysis of Corynebacterium glutamicum on biotransformation of toxic furaldehyde and benzaldehyde inhibitory compounds.
    Zhou P; Khushk I; Gao Q; Bao J
    J Ind Microbiol Biotechnol; 2019 Jul; 46(7):951-963. PubMed ID: 30972584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical characterization of ethanol-dependent reduction of furfural by alcohol dehydrogenases.
    Li Q; Metthew Lam LK; Xun L
    Biodegradation; 2011 Nov; 22(6):1227-37. PubMed ID: 21526389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of furfural on the respiratory metabolism of Saccharomyces cerevisiae in glucose-limited chemostats.
    Sárvári Horváth I; Franzén CJ; Taherzadeh MJ; Niklasson C; Lidén G
    Appl Environ Microbiol; 2003 Jul; 69(7):4076-86. PubMed ID: 12839784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of furfural on anaerobic glycolytic kinetics of Saccharomyces cerevisiae in batch culture.
    Palmqvist E; Almeida JS; Hahn-Hägerdal B
    Biotechnol Bioeng; 1999 Feb; 62(4):447-54. PubMed ID: 9921153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lactate production as representative of the fermentation potential of Corynebacterium glutamicum 2262 in a one-step process.
    Khuat HB; Kaboré AK; Olmos E; Fick M; Boudrant J; Goergen JL; Delaunay S; Guedon E
    Biosci Biotechnol Biochem; 2014; 78(2):343-9. PubMed ID: 25036691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increasing available NADH supply during succinic acid production by Corynebacterium glutamicum.
    Zhou Z; Wang C; Chen Y; Zhang K; Xu H; Cai H; Chen Z
    Biotechnol Prog; 2015; 31(1):12-9. PubMed ID: 25311136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alcohol dehydrogenases from Scheffersomyces stipitis involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion.
    Ma M; Wang X; Zhang X; Zhao X
    Appl Microbiol Biotechnol; 2013 Sep; 97(18):8411-25. PubMed ID: 23912116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced acetic acid and succinic acid production under microaerobic conditions by Corynebacterium glutamicum harboring Escherichia coli transhydrogenase gene pntAB.
    Yamauchi Y; Hirasawa T; Nishii M; Furusawa C; Shimizu H
    J Gen Appl Microbiol; 2014; 60(3):112-8. PubMed ID: 25008167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation of furfural (2-furaldehyde) to methane and carbon dioxide by an anaerobic consortium.
    Rivard CJ; Grohmann K
    Appl Biochem Biotechnol; 1991; 28-29():285-95. PubMed ID: 1929367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cupriavidus necator JMP134 rapidly reduces furfural with a Zn-dependent alcohol dehydrogenase.
    Li Q; Metthew Lam LK; Xun L
    Biodegradation; 2011 Nov; 22(6):1215-25. PubMed ID: 21526390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains.
    Liu ZL; Slininger PJ; Gorsich SW
    Appl Biochem Biotechnol; 2005; 121-124():451-60. PubMed ID: 15917621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anaerobic growth of Corynebacterium glutamicum using nitrate as a terminal electron acceptor.
    Nishimura T; Vertès AA; Shinoda Y; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2007 Jun; 75(4):889-97. PubMed ID: 17347820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clostridium species strain BOH3 tolerates and transforms inhibitors from horticulture waste hydrolysates.
    Yan Y; He J
    Appl Microbiol Biotechnol; 2017 Aug; 101(15):6289-6297. PubMed ID: 28676908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.