BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 25112571)

  • 1. Functionalized graphene as a nanostructured membrane for removal of copper and mercury from aqueous solution: a molecular dynamics simulation study.
    Azamat J; Khataee A; Joo SW
    J Mol Graph Model; 2014 Sep; 53():112-117. PubMed ID: 25112571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of a hazardous heavy metal from aqueous solution using functionalized graphene and boron nitride nanosheets: Insights from simulations.
    Azamat J; Sattary BS; Khataee A; Joo SW
    J Mol Graph Model; 2015 Sep; 61():13-20. PubMed ID: 26186492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient Removal of Heavy Metals from Aqueous Solutions through Functionalized γ-Graphyne-1 Membranes under External Uniform Electric Fields: Insights from Molecular Dynamics Simulations.
    Majidi S; Erfan-Niya H; Azamat J; Cruz-Chú ER; Walther JH
    J Phys Chem B; 2021 Nov; 125(44):12254-12263. PubMed ID: 34724377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functionalized graphene nanosheets as absorbent for copper (II) removal from water.
    Cao ML; Li Y; Yin H; Shen S
    Ecotoxicol Environ Saf; 2019 May; 173():28-36. PubMed ID: 30753938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics simulations of trihalomethanes removal from water using boron nitride nanosheets.
    Azamat J; Khataee A; Joo SW
    J Mol Model; 2016 Apr; 22(4):82. PubMed ID: 26983611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of trihalomethanes from aqueous solution through armchair carbon nanotubes: a molecular dynamics study.
    Azamat J; Khataee A; Joo SW; Yin B
    J Mol Graph Model; 2015 Apr; 57():70-5. PubMed ID: 25682360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation insights for graphene-based water desalination membranes.
    Konatham D; Yu J; Ho TA; Striolo A
    Langmuir; 2013 Sep; 29(38):11884-97. PubMed ID: 23848277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reusable DNA-functionalized-graphene for ultrasensitive mercury (II) detection and removal.
    Liu Y; Wang X; Wu H
    Biosens Bioelectron; 2017 Jan; 87():129-135. PubMed ID: 27542085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembled three-dimensional double network graphene oxide/polyacrylic acid hybrid aerogel for removal of Cu
    Han Q; Chen L; Li W; Zhou Z; Fang Z; Xu Z; Qian X
    Environ Sci Pollut Res Int; 2018 Dec; 25(34):34438-34447. PubMed ID: 30306446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microporous spongy chitosan monoliths doped with graphene oxide as highly effective adsorbent for methyl orange and copper nitrate (Cu(NO3)2) ions.
    Wang Y; Liu X; Wang H; Xia G; Huang W; Song R
    J Colloid Interface Sci; 2014 Feb; 416():243-51. PubMed ID: 24370428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A theoretical investigation into the effects of functionalized graphene nanosheets on dimethyl sulfoxide separation.
    Ajalli N; Alizadeh M; Hasanzadeh A; Khataee A; Azamat J
    Chemosphere; 2022 Jun; 297():134183. PubMed ID: 35248588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modification and characterization of PET fibers for fast removal of Hg(II), Cu(II) and Co(II) metal ions from aqueous solutions.
    Monier M; Abdel-Latif DA
    J Hazard Mater; 2013 Apr; 250-251():122-30. PubMed ID: 23435202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport of hydrated nitrate and nitrite ions through graphene nanopores in aqueous medium.
    Yadav S; Chandra A
    J Comput Chem; 2020 Jul; 41(20):1850-1858. PubMed ID: 32500955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of graphene oxide/chitosan/FeOOH nanocomposite for the removal of Pb(II) from aqueous solution.
    Sheshmani S; Akhundi Nematzadeh M; Shokrollahzadeh S; Ashori A
    Int J Biol Macromol; 2015 Sep; 80():475-80. PubMed ID: 26187194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic Graphene Nanosheet-Based Microfluidic Device for Homogeneous Real-Time Electronic Monitoring of Pyrophosphatase Activity Using Enzymatic Hydrolysate-Induced Release of Copper Ion.
    Lin Y; Zhou Q; Li J; Shu J; Qiu Z; Lin Y; Tang D
    Anal Chem; 2016 Jan; 88(1):1030-8. PubMed ID: 26609552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colorimetric detection of mercury, lead and copper ions simultaneously using protein-functionalized gold nanoparticles.
    Guo Y; Wang Z; Qu W; Shao H; Jiang X
    Biosens Bioelectron; 2011 Jun; 26(10):4064-9. PubMed ID: 21543219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanics and molecular filtration performance of graphyne nanoweb membranes for selective water purification.
    Lin S; Buehler MJ
    Nanoscale; 2013 Dec; 5(23):11801-7. PubMed ID: 24121618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence detection and removal of copper from water using a biobased and biodegradable 2D soft material.
    Li M; Liu Z; Wang S; Calatayud DG; Zhu WH; James TD; Wang L; Mao B; Xiao HN
    Chem Commun (Camb); 2018 Jan; 54(2):184-187. PubMed ID: 29220059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding flow enhancement in graphene-coated nanochannels.
    Jin Y; Tao R; Li Z
    Electrophoresis; 2019 Mar; 40(6):859-864. PubMed ID: 30575055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption of Ag, Cu and Hg from aqueous solutions using expanded perlite.
    Ghassabzadeh H; Mohadespour A; Torab-Mostaedi M; Zaheri P; Maragheh MG; Taheri H
    J Hazard Mater; 2010 May; 177(1-3):950-5. PubMed ID: 20096505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.