These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 25112598)

  • 21. The effect of dual-task on jump landing kinematics and kinetics in female athletes with or without dynamic knee valgus.
    Zamankhanpour M; Sheikhhoseini R; Letafatkar A; Piri H; Asadi Melerdi S; Abdollahi S
    Sci Rep; 2023 Aug; 13(1):14305. PubMed ID: 37652971
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetic and kinematic differences between first and second landings of a drop vertical jump task: implications for injury risk assessments.
    Bates NA; Ford KR; Myer GD; Hewett TE
    Clin Biomech (Bristol, Avon); 2013 Apr; 28(4):459-66. PubMed ID: 23562293
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improvements in landing biomechanics following anterior cruciate ligament reconstruction in adolescent athletes.
    Mueske NM; Patel AR; Pace JL; Zaslow TL; VandenBerg CD; Katzel MJ; Edison BR; Wren TAL
    Sports Biomech; 2020 Dec; 19(6):738-749. PubMed ID: 30274539
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Association of Proximal and Distal Factors With Lower Limb Kinematics During a Classical Ballet Jump.
    Cabral AM; Martinez AF; Leme V; Luz BC; Serrão FV
    J Sport Rehabil; 2023 Feb; 32(2):170-176. PubMed ID: 36049748
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Video Feedback and 2-Dimensional Landing Kinematics in Elite Female Handball Players.
    Benjaminse A; Postma W; Janssen I; Otten E
    J Athl Train; 2017 Nov; 52(11):993-1001. PubMed ID: 29035582
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effects of a subsequent jump on the knee abduction angle during the early landing phase.
    Ishida T; Koshino Y; Yamanaka M; Ueno R; Taniguchi S; Samukawa M; Saito H; Matsumoto H; Aoki Y; Tohyama H
    BMC Musculoskelet Disord; 2018 Oct; 19(1):379. PubMed ID: 30342498
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ankle Dorsiflexion Displacement During Landing is Associated With Initial Contact Kinematics but not Joint Displacement.
    Begalle RL; Walsh MC; McGrath ML; Boling MC; Blackburn JT; Padua DA
    J Appl Biomech; 2015 Aug; 31(4):205-10. PubMed ID: 25734492
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of maturation on knee biomechanics during cutting and landing in young female soccer players.
    Westbrook AE; Taylor JB; Nguyen AD; Paterno MV; Ford KR
    PLoS One; 2020; 15(5):e0233701. PubMed ID: 32453805
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Timing of lower extremity frontal plane motion differs between female and male athletes during a landing task.
    Joseph MF; Rahl M; Sheehan J; MacDougall B; Horn E; Denegar CR; Trojian TH; Anderson JM; Kraemer WJ
    Am J Sports Med; 2011 Jul; 39(7):1517-21. PubMed ID: 21383083
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hamstrings stiffness and landing biomechanics linked to anterior cruciate ligament loading.
    Blackburn JT; Norcross MF; Cannon LN; Zinder SM
    J Athl Train; 2013; 48(6):764-72. PubMed ID: 24303987
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Volitional Spine Stabilization During a Drop Vertical Jump From Different Landing Heights: Implications for Anterior Cruciate Ligament Injury.
    Haddas R; Hooper T; James CR; Sizer PS
    J Athl Train; 2016 Dec; 51(12):1003-1012. PubMed ID: 27874298
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Jump performance in male and female football players.
    Arundale AJH; Kvist J; Hägglund M; Fältström A
    Knee Surg Sports Traumatol Arthrosc; 2020 Feb; 28(2):606-613. PubMed ID: 31667569
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Biomechanical Comparison of Single-Leg Landing and Unplanned Sidestepping.
    Chinnasee C; Weir G; Sasimontonkul S; Alderson J; Donnelly C
    Int J Sports Med; 2018 Jul; 39(8):636-645. PubMed ID: 29902807
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study.
    Hewett TE; Myer GD; Ford KR; Heidt RS; Colosimo AJ; McLean SG; van den Bogert AJ; Paterno MV; Succop P
    Am J Sports Med; 2005 Apr; 33(4):492-501. PubMed ID: 15722287
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Non-linear flexion relationships of the knee with the hip and ankle, and their relative postures during landing.
    Yeow CH; Lee PV; Goh JC
    Knee; 2011 Oct; 18(5):323-8. PubMed ID: 20638850
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Abnormal frontal plane knee mechanics during sidestep cutting in female soccer athletes after anterior cruciate ligament reconstruction and return to sport.
    Stearns KM; Pollard CD
    Am J Sports Med; 2013 Apr; 41(4):918-23. PubMed ID: 23425687
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biomechanical features of drop vertical jump are different among various sporting activities.
    Harato K; Morishige Y; Kobayashi S; Niki Y; Nagura T
    BMC Musculoskelet Disord; 2022 Apr; 23(1):331. PubMed ID: 35395841
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Drop-Jump Landing Varies With Baseline Neurocognition: Implications for Anterior Cruciate Ligament Injury Risk and Prevention.
    Herman DC; Barth JT
    Am J Sports Med; 2016 Sep; 44(9):2347-53. PubMed ID: 27474381
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of lower limb stiffness between male and female dancers and athletes during drop jump landings.
    Ward RE; Fong Yan A; Orishimo KF; Kremenic IJ; Hagins M; Liederbach M; Hiller CE; Pappas E
    Scand J Med Sci Sports; 2019 Jan; 29(1):71-81. PubMed ID: 30242920
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Can two-dimensional measured peak sagittal plane excursions during drop vertical jumps help identify three-dimensional measured joint moments?
    Dingenen B; Malfait B; Vanrenterghem J; Robinson MA; Verschueren SM; Staes FF
    Knee; 2015 Mar; 22(2):73-9. PubMed ID: 25575747
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.