BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 25112910)

  • 21. Reconfigurable Chirality of DNA-Bridged Nanorod Dimers.
    Lee BH; Kotov NA; Arya G
    ACS Nano; 2021 Aug; 15(8):13547-13558. PubMed ID: 34292699
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heterogeneous Kinetics in the Functionalization of Single Plasmonic Nanoparticles.
    Horáček M; Armstrong RE; Zijlstra P
    Langmuir; 2018 Jan; 34(1):131-138. PubMed ID: 29185760
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chemically Fueled Plasmon Switching of Gold Nanorods by Single-Base Pairing of Surface-Grafted DNA.
    Zhang L; Zhao C; Zhang Y; Wang L; Wang G; Kanayama N; Takarada T; Maeda M; Liang X
    Langmuir; 2019 Sep; 35(36):11710-11716. PubMed ID: 31407908
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Surface-Plasmon-Coupled Fluorescence Enhancement Based on Ordered Gold Nanorod Array Biochip for Ultrasensitive DNA Analysis.
    Mei Z; Tang L
    Anal Chem; 2017 Jan; 89(1):633-639. PubMed ID: 27991768
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fabrication of silica-coated gold nanorods functionalized with DNA for enhanced surface plasmon resonance imaging biosensing applications.
    Sendroiu IE; Warner ME; Corn RM
    Langmuir; 2009 Oct; 25(19):11282-4. PubMed ID: 19788208
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bifacial DNA origami-directed discrete, three-dimensional, anisotropic plasmonic nanoarchitectures with tailored optical chirality.
    Lan X; Chen Z; Dai G; Lu X; Ni W; Wang Q
    J Am Chem Soc; 2013 Aug; 135(31):11441-4. PubMed ID: 23879265
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The most effective gold nanorod size for plasmonic photothermal therapy: theory and in vitro experiments.
    Mackey MA; Ali MR; Austin LA; Near RD; El-Sayed MA
    J Phys Chem B; 2014 Feb; 118(5):1319-26. PubMed ID: 24433049
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Universal scaling and Fano resonance in the plasmon coupling between gold nanorods.
    Woo KC; Shao L; Chen H; Liang Y; Wang J; Lin HQ
    ACS Nano; 2011 Jul; 5(7):5976-86. PubMed ID: 21702485
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Origin of the Plasmonic Chirality of Gold Nanorod Trimers Templated by DNA Origami.
    Chen Z; Choi CKK; Wang Q
    ACS Appl Mater Interfaces; 2018 Aug; 10(32):26835-26840. PubMed ID: 30073831
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanoparticle enhanced surface plasmon resonance biosensing: application of gold nanorods.
    Law WC; Yong KT; Baev A; Hu R; Prasad PN
    Opt Express; 2009 Oct; 17(21):19041-6. PubMed ID: 20372639
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DNA-Enabled Chiral Gold Nanoparticle-Chromophore Hybrid Structure with Resonant Plasmon-Exciton Coupling Gives Unusual and Strong Circular Dichroism.
    Lan X; Zhou X; McCarthy LA; Govorov AO; Liu Y; Link S
    J Am Chem Soc; 2019 Dec; 141(49):19336-19341. PubMed ID: 31724853
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simple and Rapid Functionalization of Gold Nanorods with Oligonucleotides Using an mPEG-SH/Tween 20-Assisted Approach.
    Li J; Zhu B; Zhu Z; Zhang Y; Yao X; Tu S; Liu R; Jia S; Yang CJ
    Langmuir; 2015 Jul; 31(28):7869-76. PubMed ID: 26101941
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing.
    Wang P; Zhang L; Xia Y; Tong L; Xu X; Ying Y
    Nano Lett; 2012 Jun; 12(6):3145-50. PubMed ID: 22582809
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enzymatic reaction modulated gold nanorod end-to-end self-assembly for ultrahigh sensitively colorimetric sensing of cholinesterase and organophosphate pesticides in human blood.
    Lu L; Xia Y
    Anal Chem; 2015 Aug; 87(16):8584-91. PubMed ID: 26217956
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plasmonic nanobiosensor based on Au nanorods with improved sensitivity: A comparative study for two different configurations.
    Peixoto LPF; Santos JFL; Andrade GFS
    Anal Chim Acta; 2019 Nov; 1084():71-77. PubMed ID: 31519236
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Antibonding plasmon modes in colloidal gold nanorod clusters.
    Grzelczak M; Mezzasalma SA; Ni W; Herasimenka Y; Feruglio L; Montini T; Pérez-Juste J; Fornasiero P; Prato M; Liz-Marzán LM
    Langmuir; 2012 Jun; 28(24):8826-33. PubMed ID: 22044275
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In situ real-time investigation of cancer cell photothermolysis mediated by excited gold nanorod surface plasmons.
    Chen CL; Kuo LR; Chang CL; Hwu YK; Huang CK; Lee SY; Chen K; Lin SJ; Huang JD; Chen YY
    Biomaterials; 2010 May; 31(14):4104-12. PubMed ID: 20181393
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-sensitivity biosensors fabricated by tailoring the localized surface plasmon resonance property of core-shell gold nanorods.
    Huang H; Huang S; Yuan S; Qu C; Chen Y; Xu Z; Liao B; Zeng Y; Chu PK
    Anal Chim Acta; 2011 Jan; 683(2):242-7. PubMed ID: 21167977
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gold Nanorods for Light-Based Lung Cancer Theranostics.
    Knights OB; McLaughlan JR
    Int J Mol Sci; 2018 Oct; 19(11):. PubMed ID: 30366384
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.