BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

540 related articles for article (PubMed ID: 25112936)

  • 21. Electrically conductive nanofibers with highly oriented structures and their potential application in skeletal muscle tissue engineering.
    Chen MC; Sun YC; Chen YH
    Acta Biomater; 2013 Mar; 9(3):5562-72. PubMed ID: 23099301
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular Approach to Conjugated Polymers with Biomimetic Properties.
    Baek P; Voorhaar L; Barker D; Travas-Sejdic J
    Acc Chem Res; 2018 Jul; 51(7):1581-1589. PubMed ID: 29897228
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conducting Polymers for Tissue Engineering.
    Guo B; Ma PX
    Biomacromolecules; 2018 Jun; 19(6):1764-1782. PubMed ID: 29684268
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The construction of three-dimensional composite fibrous macrostructures with nanotextures for biomedical applications.
    Song J; Gao H; Zhu G; Cao X; Shi X; Wang Y
    Biofabrication; 2016 Aug; 8(3):035009. PubMed ID: 27563025
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimizing the electrical conductivity of polyacrylonitrile/polyaniline with nickel nanoparticles for the enhanced electrostimulation of Schwann cells proliferation.
    Wang M; Tremblay PL; Zhang T
    Bioelectrochemistry; 2021 Aug; 140():107750. PubMed ID: 33578301
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dendronized polyaniline nanotubes for cardiac tissue engineering.
    Moura RM; de Queiroz AA
    Artif Organs; 2011 May; 35(5):471-7. PubMed ID: 21595714
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis, characterization and antioxidant activity of a novel electroactive and biodegradable polyurethane for cardiac tissue engineering application.
    Baheiraei N; Yeganeh H; Ai J; Gharibi R; Azami M; Faghihi F
    Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():24-37. PubMed ID: 25280676
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A New Strong-Acid Free Route to Produce Xanthan Gum-PANI Composite Scaffold Supporting Bioelectricity.
    Pescosolido F; Montaina L; Carcione R; Politi S; Matassa R; Carotenuto F; Nottola SA; Nardo PD; Tamburri E
    Macromol Biosci; 2023 Nov; 23(11):e2300132. PubMed ID: 37399840
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Polyaniline cryogels: Biocompatibility of novel conducting macroporous material.
    Humpolíček P; Radaszkiewicz KA; Capáková Z; Pacherník J; Bober P; Kašpárková V; Rejmontová P; Lehocký M; Ponížil P; Stejskal J
    Sci Rep; 2018 Jan; 8(1):135. PubMed ID: 29317683
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fabrication of conductive gelatin methacrylate-polyaniline hydrogels.
    Wu Y; Chen YX; Yan J; Quinn D; Dong P; Sawyer SW; Soman P
    Acta Biomater; 2016 Mar; 33():122-30. PubMed ID: 26821341
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The biocompatibility of polyaniline and polypyrrole 2: Doping with organic phosphonates.
    Capáková Z; Radaszkiewicz KA; Acharya U; Truong TH; Pacherník J; Bober P; Kašpárková V; Stejskal J; Pfleger J; Lehocký M; Humpolíček P
    Mater Sci Eng C Mater Biol Appl; 2020 Aug; 113():110986. PubMed ID: 32487402
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Developing a tissue-engineered neural-electrical relay using encapsulated neuronal constructs on conducting polymer fibers.
    Cullen DK; R Patel A; Doorish JF; Smith DH; Pfister BJ
    J Neural Eng; 2008 Dec; 5(4):374-84. PubMed ID: 18827311
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optimizing PANi doped electroactive substrates as patches for the regeneration of cardiac muscle.
    Borriello A; Guarino V; Schiavo L; Alvarez-Perez MA; Ambrosio L
    J Mater Sci Mater Med; 2011 Apr; 22(4):1053-62. PubMed ID: 21373812
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Flexible electrically conductive nanocomposite membrane based on bacterial cellulose and polyaniline.
    Hu W; Chen S; Yang Z; Liu L; Wang H
    J Phys Chem B; 2011 Jul; 115(26):8453-7. PubMed ID: 21671578
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vitro study of electroactive tetraaniline-containing thermosensitive hydrogels for cardiac tissue engineering.
    Cui H; Liu Y; Cheng Y; Zhang Z; Zhang P; Chen X; Wei Y
    Biomacromolecules; 2014 Apr; 15(4):1115-23. PubMed ID: 24597966
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Polyaniline as a material for hydrogen storage applications.
    Attia NF; Geckeler KE
    Macromol Rapid Commun; 2013 Jul; 34(13):1043-55. PubMed ID: 23744735
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis of a novel biodegradable and electroactive polyphosphazene for biomedical application.
    Zhang QS; Yan YH; Li SP; Feng T
    Biomed Mater; 2009 Jun; 4(3):035008. PubMed ID: 19468157
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrically conductive biocompatible composite aerogel based on nanofibrillated template of bacterial cellulose/polyaniline/nano-clay.
    Salehi MH; Golbaten-Mofrad H; Jafari SH; Goodarzi V; Entezari M; Hashemi M; Zamanlui S
    Int J Biol Macromol; 2021 Mar; 173():467-480. PubMed ID: 33484804
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Progress in Conductive Polyaniline-Based Nanocomposites for Biomedical Applications: A Review.
    Zare EN; Makvandi P; Ashtari B; Rossi F; Motahari A; Perale G
    J Med Chem; 2020 Jan; 63(1):1-22. PubMed ID: 31502840
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of electroactive and elastic nanofibers that contain polyaniline and poly(L-lactide-co-epsilon-caprolactone) for the control of cell adhesion.
    Jeong SI; Jun ID; Choi MJ; Nho YC; Lee YM; Shin H
    Macromol Biosci; 2008 Jul; 8(7):627-37. PubMed ID: 18401867
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.