These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 251130)

  • 1. Modification of elongation-factor-Tu . guanine-nucleotide interaction by kirromycin. A comparison with the effect of aminoacyl-tRNA and elongation factor Ts.
    Fasano O; Bruns W; Crechet JB; Sander G; Parmeggiani A
    Eur J Biochem; 1978 Sep; 89(2):557-65. PubMed ID: 251130
    [No Abstract]   [Full Text] [Related]  

  • 2. Interaction of Escherichia coli EF-Tu.GTP and EF-Tu.GDP with analogues of the 3' terminus of aminoacyl-tRNA.
    Jonák J; Smrt J; Holý A; Rychlík I
    Eur J Biochem; 1980 Apr; 105(2):315-20. PubMed ID: 6991255
    [No Abstract]   [Full Text] [Related]  

  • 3. The role of guanine nucleotides in the interaction between aminoacyl-tRNA and elongation factor 1 of Artemia salina.
    Roobol K; Möller W
    Eur J Biochem; 1978 Oct; 90(3):471-7. PubMed ID: 251131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The elongation factor Tu binds aminoacyl-tRNA in the presence of GDP.
    Pingoud A; Block W; Wittinghofer A; Wolf H; Fischer E
    J Biol Chem; 1982 Oct; 257(19):11261-7. PubMed ID: 6749837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The elongation factor Tu.kirromycin complex has two binding sites for tRNA molecules.
    van Noort JM; Duisterwinkel FJ; Jonák J; Sedlácek J; Kraal B; Bosch L
    EMBO J; 1982; 1(10):1199-205. PubMed ID: 6765192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of nucleotide- and aurodox-induced changes in elongation factor Tu conformation upon its interactions with aminoacyl transfer RNA. A fluorescence study.
    Dell VA; Miller DL; Johnson AE
    Biochemistry; 1990 Feb; 29(7):1757-63. PubMed ID: 2110000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The elongation factor Tu . guanosine tetraphosphate complex.
    Pingoud A; Block W
    Eur J Biochem; 1981 Jun; 116(3):631-4. PubMed ID: 7021151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of mutagenesis of Gln97 in the switch II region of Escherichia coli elongation factor Tu on its interaction with guanine nucleotides, elongation factor Ts, and aminoacyl-tRNA.
    Navratil T; Spremulli LL
    Biochemistry; 2003 Nov; 42(46):13587-95. PubMed ID: 14622005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A 1H NMR study of the Escherichia coli elongation-factor Tu with guanine nucleotides and the antibiotic kirromycin.
    Römer R; Block W; Pingoud A; Wolf H
    FEBS Lett; 1981 Apr; 126(2):161-4. PubMed ID: 7016585
    [No Abstract]   [Full Text] [Related]  

  • 10. Pulvomycin, an inhibitor of protein biosynthesis preventing ternary complex formation between elongation factor Tu, GTP, and aminoacyl-tRNA.
    Wolf H; Assmann D; Fischer E
    Proc Natl Acad Sci U S A; 1978 Nov; 75(11):5324-8. PubMed ID: 364475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactivity of essential histidine residues in EF-Tu.GDP and EF-Tu.GTP from Escherichia coli.
    Jonák J; Rychlík I
    Biochim Biophys Acta; 1987 Jan; 908(1):97-102. PubMed ID: 3542047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 31P NMR study of the guanine nucleotide binding of elongation factor Tu from Thermus thermophilus.
    Nakano A; Miyazawa T; Nakamura S; Kaziro Y
    FEBS Lett; 1980 Jul; 116(1):72-4. PubMed ID: 7409137
    [No Abstract]   [Full Text] [Related]  

  • 13. [Elongation factor EF-Ts interacts with the aminoacyl-tRNA.EF-Tu.GTP complex].
    Kireeva ML; Bubunenko MG; Bushueva TL
    Mol Biol (Mosk); 1992; 26(1):104-9. PubMed ID: 1508161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics and thermodynamics of the interaction of elongation factor Tu with elongation factor Ts, guanine nucleotides, and aminoacyl-tRNA.
    Romero G; Chau V; Biltonen RL
    J Biol Chem; 1985 May; 260(10):6167-74. PubMed ID: 3846595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural outline of the detailed mechanism for elongation factor Ts-mediated guanine nucleotide exchange on elongation factor Tu.
    Thirup SS; Van LB; Nielsen TK; Knudsen CR
    J Struct Biol; 2015 Jul; 191(1):10-21. PubMed ID: 26073967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the elongation factors from calf brain. 2. Functional properties of EF-1 alpha, the action of physiological ligands and kirromycin.
    Crechet JB; Parmeggiani A
    Eur J Biochem; 1986 Dec; 161(3):647-53. PubMed ID: 3641717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of the interaction of translation factor SelB from Escherichia coli with guanosine nucleotides and selenocysteine insertion sequence RNA.
    Thanbichler M; Bock A; Goody RS
    J Biol Chem; 2000 Jul; 275(27):20458-66. PubMed ID: 10781605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational transition of protein synthesis elongation factor Tu induced by guanine nucleotides. Modulation by kirromycin and elongation factor Ts.
    Douglass J; Blumenthal T
    J Biol Chem; 1979 Jun; 254(12):5383-7. PubMed ID: 447658
    [No Abstract]   [Full Text] [Related]  

  • 19. Kirromycin drastically reduces the affinity of Escherichia coli elongation factor Tu for aminoacyl-tRNA.
    Abrahams JP; van Raaij MJ; Ott G; Kraal B; Bosch L
    Biochemistry; 1991 Jul; 30(27):6705-10. PubMed ID: 2065055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substitution of Val20 by Gly in elongation factor Tu. Effects on the interaction with elongation factors Ts, aminoacyl-tRNA and ribosomes.
    Jacquet E; Parmeggiani A
    Eur J Biochem; 1989 Nov; 185(2):341-6. PubMed ID: 2684669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.