BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 25113049)

  • 1. An exonuclease I-based label-free fluorometric aptasensor for adenosine triphosphate (ATP) detection with a wide concentration range.
    Wei Y; Chen Y; Li H; Shuang S; Dong C; Wang G
    Biosens Bioelectron; 2015 Jan; 63():311-316. PubMed ID: 25113049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A G-quadruplex-based Label-free Fluorometric Aptasensor for Adenosine Triphosphate Detection.
    Li LJ; Tian X; Kong XJ; Chu X
    Anal Sci; 2015; 31(6):469-73. PubMed ID: 26063007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of turn-on and ratiometric fluorescent G-quadruplex aptasensor approaches for the detection of ATP.
    Srinivasan S; Ranganathan V; DeRosa MC; Murari BM
    Anal Bioanal Chem; 2019 Mar; 411(7):1319-1330. PubMed ID: 30612178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A sensitive electrochemical aptasensor for ATP detection based on exonuclease III-assisted signal amplification strategy.
    Bao T; Shu H; Wen W; Zhang X; Wang S
    Anal Chim Acta; 2015 Mar; 862():64-9. PubMed ID: 25682429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exonuclease I-assisted fluorescence aptasensor for tetrodotoxin.
    Lan Y; Qin G; Wei Y; Wang L; Dong C
    Ecotoxicol Environ Saf; 2020 May; 194():110417. PubMed ID: 32171958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chimeric Aptamers-Based and MoS
    Fan YY; Mou ZL; Wang M; Li J; Zhang J; Dang FQ; Zhang ZQ
    Anal Chem; 2018 Nov; 90(22):13708-13713. PubMed ID: 30350952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Label-free fluorescent aptasensor for potassium ion using structure-switching aptamers and berberine.
    Guo Y; Chen Y; Wei Y; Li H; Dong C
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt C():1635-41. PubMed ID: 25459726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A nuclease-assisted label-free aptasensor for fluorescence turn-on detection of ATP based on the in situ formation of copper nanoparticles.
    Song Q; Wang R; Sun F; Chen H; Wang Z; Na N; Ouyang J
    Biosens Bioelectron; 2017 Jan; 87():760-763. PubMed ID: 27649332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A facile label-free G-quadruplex based fluorescent aptasensor method for rapid detection of ATP.
    Liu H; Ma C; Ning F; Chen H; He H; Wang K; Wang J
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Mar; 175():164-167. PubMed ID: 28038373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A label-free fluorometric aptasensor for adenosine triphosphate (ATP) detection based on aggregation-induced emission probe.
    Li H; Guo Z; Xie W; Sun W; Ji S; Tian J; Lv L
    Anal Biochem; 2019 Aug; 578():60-65. PubMed ID: 31095938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A label-free fluorescent adenosine triphosphate biosensor via overhanging aptamer-triggered enzyme protection and target recycling amplification.
    Wang Z; Zhao J; Dai Z
    Analyst; 2016 Jun; 141(13):4006-9. PubMed ID: 27221644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Label-free and rapid detection of ATP based on structure switching of aptamers.
    Ji D; Wang H; Ge J; Zhang L; Li J; Bai D; Chen J; Li Z
    Anal Biochem; 2017 Jun; 526():22-28. PubMed ID: 28315316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A universal and label-free aptasensor for fluorescent detection of ATP and thrombin based on SYBR Green I dye.
    Kong L; Xu J; Xu Y; Xiang Y; Yuan R; Chai Y
    Biosens Bioelectron; 2013 Apr; 42():193-7. PubMed ID: 23202351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A label-free Exonuclease I-assisted fluorescence aptasensor for highly selective and sensitive detection of silver ions.
    Wei Z; Lan Y; Zhang C; Jia J; Niu W; Wei Y; Fu S; Yun K
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Nov; 260():119927. PubMed ID: 34020384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Target-induced structure switching of hairpin aptamers for label-free and sensitive fluorescent detection of ATP via exonuclease-catalyzed target recycling amplification.
    Xu Y; Xu J; Xiang Y; Yuan R; Chai Y
    Biosens Bioelectron; 2014 Jan; 51():293-6. PubMed ID: 23974161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A label-free fluorescent aptasensor for selective and sensitive detection of streptomycin in milk and blood serum.
    Taghdisi SM; Danesh NM; Nameghi MA; Ramezani M; Abnous K
    Food Chem; 2016 Jul; 203():145-149. PubMed ID: 26948599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A terbium-based metal-organic framework@gold nanoparticle system as a fluorometric probe for aptamer based determination of adenosine triphosphate.
    Qu F; Sun C; Lv X; You J
    Mikrochim Acta; 2018 Jul; 185(8):359. PubMed ID: 29978289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A label-free fluorescence assay for thrombin based on aptamer exonuclease protection and exonuclease III-assisted recycling amplification-responsive cascade zinc(II)-protoporphyrin IX/G-quadruplex supramolecular fluorescent labels.
    Lv Y; Xue Q; Gu X; Zhang S; Liu J
    Analyst; 2014 May; 139(10):2583-8. PubMed ID: 24707508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exonuclease III-assisted fluorometric aptasensor for the carcinoembryonic antigen using graphene oxide and 2-aminopurine.
    Chen M; Ma C; Zhao H; Yan Y
    Mikrochim Acta; 2019 Jul; 186(8):500. PubMed ID: 31270630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel strategy to improve the sensing performances of split ATP aptamer based fluorescent indicator displacement assay through enhanced molecular recognition.
    Ma Y; Geng F; Wang Y; Xu M; Shao C; Qu P; Zhang Y; Ye B
    Biosens Bioelectron; 2019 Jun; 134():36-41. PubMed ID: 30954924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.