These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 25113551)
1. Impact of xylan on synergistic effects of xylanases and cellulases in enzymatic hydrolysis of lignocelluloses. Zhang J; Viikari L Appl Biochem Biotechnol; 2014 Oct; 174(4):1393-1402. PubMed ID: 25113551 [TBL] [Abstract][Full Text] [Related]
2. Influence of xylan on the enzymatic hydrolysis of steam-pretreated corn stover and hybrid poplar. Bura R; Chandra R; Saddler J Biotechnol Prog; 2009; 25(2):315-22. PubMed ID: 19266561 [TBL] [Abstract][Full Text] [Related]
3. Hydrolyzabilities of different corn stover fractions after aqueous ammonia pretreatment. Sun Z; Ge X; Xin D; Zhang J Appl Biochem Biotechnol; 2014 Feb; 172(3):1506-16. PubMed ID: 24222503 [TBL] [Abstract][Full Text] [Related]
4. Effect of additives on adsorption and desorption behavior of xylanase on acid-insoluble lignin from corn stover and wheat straw. Li Y; Ge X; Sun Z; Zhang J Bioresour Technol; 2015 Jun; 186():316-320. PubMed ID: 25818260 [TBL] [Abstract][Full Text] [Related]
5. Hydrolyzability of xylan after adsorption on cellulose: Exploration of xylan limitation on enzymatic hydrolysis of cellulose. Wang X; Li K; Yang M; Zhang J Carbohydr Polym; 2016 Sep; 148():362-70. PubMed ID: 27185150 [TBL] [Abstract][Full Text] [Related]
6. The effect of lignin removal by alkaline peroxide pretreatment on the susceptibility of corn stover to purified cellulolytic and xylanolytic enzymes. Selig MJ; Vinzant TB; Himmel ME; Decker SR Appl Biochem Biotechnol; 2009 May; 155(1-3):397-406. PubMed ID: 19214798 [TBL] [Abstract][Full Text] [Related]
7. Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Yang B; Wyman CE Biotechnol Bioeng; 2004 Apr; 86(1):88-95. PubMed ID: 15007845 [TBL] [Abstract][Full Text] [Related]
8. Enhanced xylanase performance in the hydrolysis of lignocellulosic materials by surfactants and non-catalytic protein. Ge X; Sun Z; Xin D; Zhang J Appl Biochem Biotechnol; 2014 Feb; 172(4):2106-18. PubMed ID: 24338209 [TBL] [Abstract][Full Text] [Related]
9. Chemical Pretreatment-Independent Saccharifications of Xylan and Cellulose of Rice Straw by Bacterial Weak Lignin-Binding Xylanolytic and Cellulolytic Enzymes. Teeravivattanakit T; Baramee S; Phitsuwan P; Sornyotha S; Waeonukul R; Pason P; Tachaapaikoon C; Poomputsa K; Kosugi A; Sakka K; Ratanakhanokchai K Appl Environ Microbiol; 2017 Nov; 83(22):. PubMed ID: 28864653 [TBL] [Abstract][Full Text] [Related]
10. Hydrolytic enzyme of cellulose for complex formulation applied research. Lin ZX; Zhang HM; Ji XJ; Chen JW; Huang H Appl Biochem Biotechnol; 2011 May; 164(1):23-33. PubMed ID: 20972891 [TBL] [Abstract][Full Text] [Related]
11. Fungal cellulase/xylanase production and corresponding hydrolysis using pretreated corn stover as substrates. Zhang L; Wang X; Ruan Z; Liu Y; Niu X; Yue Z; Li Z; Liao W; Liu Y Appl Biochem Biotechnol; 2014 Jan; 172(2):1045-54. PubMed ID: 24142357 [TBL] [Abstract][Full Text] [Related]
12. Replacement of carbohydrate binding modules improves acetyl xylan esterase activity and its synergistic hydrolysis of different substrates with xylanase. Liu S; Ding S BMC Biotechnol; 2016 Oct; 16(1):73. PubMed ID: 27770795 [TBL] [Abstract][Full Text] [Related]
13. Factors Affecting the Catalytic Efficiency and Synergism of Xylanase and Cellulase During Enzymatic Hydrolysis of Birch Wood. Li H; Chen X; Wang C; Chen X; Guo H; Xiong L; Zhang H; Huang C; Chen X Appl Biochem Biotechnol; 2021 Nov; 193(11):3469-3482. PubMed ID: 34245403 [TBL] [Abstract][Full Text] [Related]
14. Lignin-based polyoxyethylene ether enhanced enzymatic hydrolysis of lignocelluloses by dispersing cellulase aggregates. Lin X; Qiu X; Yuan L; Li Z; Lou H; Zhou M; Yang D Bioresour Technol; 2015 Jun; 185():165-70. PubMed ID: 25768419 [TBL] [Abstract][Full Text] [Related]
15. Effect of the molecular structure of lignin-based polyoxyethylene ether on enzymatic hydrolysis efficiency and kinetics of lignocelluloses. Lin X; Qiu X; Zhu D; Li Z; Zhan N; Zheng J; Lou H; Zhou M; Yang D Bioresour Technol; 2015 Oct; 193():266-73. PubMed ID: 26141287 [TBL] [Abstract][Full Text] [Related]
16. Characterization of a novel GH10 xylanase with a carbohydrate binding module from Aspergillus sulphureus and its synergistic hydrolysis activity with cellulase. Liu Y; Wang J; Bao C; Dong B; Cao Y Int J Biol Macromol; 2021 Jul; 182():701-711. PubMed ID: 33862072 [TBL] [Abstract][Full Text] [Related]
17. Cellulase adsorption and relationship to features of corn stover solids produced by leading pretreatments. Kumar R; Wyman CE Biotechnol Bioeng; 2009 Jun; 103(2):252-67. PubMed ID: 19195015 [TBL] [Abstract][Full Text] [Related]
18. Synergistic effect of cellulase and xylanase during hydrolysis of natural lignocellulosic substrates. Song HT; Gao Y; Yang YM; Xiao WJ; Liu SH; Xia WC; Liu ZL; Yi L; Jiang ZB Bioresour Technol; 2016 Nov; 219():710-715. PubMed ID: 27560367 [TBL] [Abstract][Full Text] [Related]
19. Contribution of a family 1 carbohydrate-binding module in thermostable glycoside hydrolase 10 xylanase from Talaromyces cellulolyticus toward synergistic enzymatic hydrolysis of lignocellulose. Inoue H; Kishishita S; Kumagai A; Kataoka M; Fujii T; Ishikawa K Biotechnol Biofuels; 2015; 8():77. PubMed ID: 26000036 [TBL] [Abstract][Full Text] [Related]