BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 25113807)

  • 1. The role of transmembrane proteins on force transmission in skeletal muscle.
    Zhang C; Gao Y
    J Biomech; 2014 Sep; 47(12):3232-6. PubMed ID: 25113807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite element analysis of mechanics of lateral transmission of force in single muscle fiber.
    Zhang C; Gao Y
    J Biomech; 2012 Jul; 45(11):2001-6. PubMed ID: 22682257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional finite element modeling of skeletal muscle using a two-domain approach: linked fiber-matrix mesh model.
    Yucesoy CA; Koopman BH; Huijing PA; Grootenboer HJ
    J Biomech; 2002 Sep; 35(9):1253-62. PubMed ID: 12163314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A micromechanical muscle model for determining the impact of motor unit fiber clustering on force transmission in aging skeletal muscle.
    Teklemariam A; Hodson-Tole E; Reeves ND; Cooper G
    Biomech Model Mechanobiol; 2019 Oct; 18(5):1401-1413. PubMed ID: 31049781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of aging on the lateral transmission of force in rat skeletal muscle.
    Zhang C; Gao Y
    J Biomech; 2014 Mar; 47(5):944-8. PubMed ID: 24507947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elucidation of extracellular matrix mechanics from muscle fibers and fiber bundles.
    Meyer GA; Lieber RL
    J Biomech; 2011 Feb; 44(4):771-3. PubMed ID: 21092966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Age-related changes in the mechanical properties of the epimysium in skeletal muscles of rats.
    Gao Y; Kostrominova TY; Faulkner JA; Wineman AS
    J Biomech; 2008; 41(2):465-9. PubMed ID: 18031752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscle as a collagen fiber reinforced composite: a review of force transmission in muscle and whole limb.
    Huijing PA
    J Biomech; 1999 Apr; 32(4):329-45. PubMed ID: 10213024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inferences on force transmission from muscle fiber architecture of the canine diaphragm.
    Boriek AM; Zhu D; Zeller M; Rodarte JR
    Am J Physiol Regul Integr Comp Physiol; 2001 Jan; 280(1):R156-65. PubMed ID: 11124147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alterations of Extracellular Matrix Mechanical Properties Contribute to Age-Related Functional Impairment of Human Skeletal Muscles.
    Pavan P; Monti E; Bondí M; Fan C; Stecco C; Narici M; Reggiani C; Marcucci L
    Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32498422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transmission of forces within mammalian skeletal muscles.
    Monti RJ; Roy RR; Hodgson JA; Edgerton VR
    J Biomech; 1999 Apr; 32(4):371-80. PubMed ID: 10213027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracellular matrix remodelling induced by alternating electrical and mechanical stimulations increases the contraction of engineered skeletal muscle tissues.
    Kim H; Kim MC; Asada HH
    Sci Rep; 2019 Feb; 9(1):2732. PubMed ID: 30804393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intrinsic stiffness of extracellular matrix increases with age in skeletal muscles of mice.
    Wood LK; Kayupov E; Gumucio JP; Mendias CL; Claflin DR; Brooks SV
    J Appl Physiol (1985); 2014 Aug; 117(4):363-9. PubMed ID: 24994884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fibre and extracellular matrix contributions to passive forces in human skeletal muscles: An experimental based constitutive law for numerical modelling of the passive element in the classical Hill-type three element model.
    Marcucci L; Bondì M; Randazzo G; Reggiani C; Natali AN; Pavan PG
    PLoS One; 2019; 14(11):e0224232. PubMed ID: 31689322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite element modeling of aponeurotomy: altered intramuscular myofascial force transmission yields complex sarcomere length distributions determining acute effects.
    Yucesoy CA; Koopman BH; Grootenboer HJ; Huijing PA
    Biomech Model Mechanobiol; 2007 Jul; 6(4):227-43. PubMed ID: 16897102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental evaluation of fiber orientation based material properties of skeletal muscle in tension.
    Kuthe CD; Uddanwadiker RV; Ramteke A
    Mol Cell Biomech; 2014 Jun; 11(2):113-28. PubMed ID: 25831858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiscale modeling of skeletal muscle to explore its passive mechanical properties and experiments verification.
    Liu F; Wang M; Ma Y
    Math Biosci Eng; 2022 Jan; 19(2):1251-1279. PubMed ID: 35135203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of Lateral Transmission of Force in the Extensor Digitorum Longus Muscle of Young and Old Mice.
    Minato K; Yoshimoto Y; Kurosawa T; Watanabe K; Kawashima H; Ikemoto-Uezumi M; Uezumi A
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microstructural analysis of skeletal muscle force generation during aging.
    Zhang Y; Chen JS; He Q; He X; Basava RR; Hodgson J; Sinha U; Sinha S
    Int J Numer Method Biomed Eng; 2020 Jan; 36(1):e3295. PubMed ID: 31820588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting muscle tissue response from calibrated component models and histology-based finite element models.
    Kuravi R; Leichsenring K; Trostorf R; Morales-Orcajo E; Böl M; Ehret AE
    J Mech Behav Biomed Mater; 2021 May; 117():104375. PubMed ID: 33578299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.