These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 25113914)

  • 1. ODE/PDE analysis of corneal curvature.
    Płociniczak L; Griffiths GW; Schiesser WE
    Comput Biol Med; 2014 Oct; 53():30-41. PubMed ID: 25113914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [A review of mathematical descriptors of corneal asphericity].
    Gatinel D; Haouat M; Hoang-Xuan T
    J Fr Ophtalmol; 2002 Jan; 25(1):81-90. PubMed ID: 11965125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of cornea curvature using radial basis functions - Part I: Methodology.
    Griffiths GW; Płociniczak Ł; Schiesser WE
    Comput Biol Med; 2016 Oct; 77():274-84. PubMed ID: 27614697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Approximate optimal control design for nonlinear one-dimensional parabolic PDE systems using empirical eigenfunctions and neural network.
    Luo B; Wu HN
    IEEE Trans Syst Man Cybern B Cybern; 2012 Dec; 42(6):1538-49. PubMed ID: 22588610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sampled-Data Fuzzy Control for Nonlinear Coupled Parabolic PDE-ODE Systems.
    Wang ZP; Wu HN; Li HX
    IEEE Trans Cybern; 2017 Sep; 47(9):2603-2615. PubMed ID: 28436911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distributed Proportional-spatial Derivative control of nonlinear parabolic systems via fuzzy PDE modeling approach.
    Wang JW; Wu HN; Li HX
    IEEE Trans Syst Man Cybern B Cybern; 2012 Jun; 42(3):927-38. PubMed ID: 22328181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of cornea curvature using radial basis functions - Part II: Fitting to data-set.
    Griffiths GW; Płociniczak Ł; Schiesser WE
    Comput Biol Med; 2016 Oct; 77():285-96. PubMed ID: 27570056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling and numerical simulation of secondary settlers: a method of lines strategy.
    David R; Saucez P; Vasel JL; Vande Wouwer A
    Water Res; 2009 Feb; 43(2):319-30. PubMed ID: 19028395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A two-dimensional mathematical model of non-linear dual-sorption of percutaneous drug absorption.
    George K
    Biomed Eng Online; 2005 Jul; 4():40. PubMed ID: 15992411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biophysical modeling of brain tumor progression: from unconditionally stable explicit time integration to an inverse problem with parabolic PDE constraints for model calibration.
    Mang A; Toma A; Schuetz TA; Becker S; Eckey T; Mohr C; Petersen D; Buzug TM
    Med Phys; 2012 Jul; 39(7):4444-59. PubMed ID: 22830777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical model of human cornea based on stromal microstructure.
    Studer H; Larrea X; Riedwyl H; Büchler P
    J Biomech; 2010 Mar; 43(5):836-42. PubMed ID: 20006338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the solutions of Huxley-type models in cardiac muscle fiber contractions.
    Taylor TW; Goto Y; Suga H
    J Theor Biol; 1993 Dec; 165(3):409-16. PubMed ID: 8114504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A model of inhomogeneous expansion of the cornea and stability of its focus.
    Kasprzak HT
    Ophthalmic Physiol Opt; 1997 Mar; 17(2):133-6. PubMed ID: 9196676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical modelling of corneal biomechanical behaviour.
    Elsheikh A; Wang D
    Comput Methods Biomech Biomed Engin; 2007 Apr; 10(2):85-95. PubMed ID: 18651274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Boundary Control of Linear Uncertain 1-D Parabolic PDE Using Approximate Dynamic Programming.
    Talaei B; Jagannathan S; Singler J
    IEEE Trans Neural Netw Learn Syst; 2018 Apr; 29(4):1213-1225. PubMed ID: 28278484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of changing intraocular pressure on the corneal and scleral curvatures in the fresh porcine eye.
    Pierscionek BK; Asejczyk-Widlicka M; Schachar RA
    Br J Ophthalmol; 2007 Jun; 91(6):801-3. PubMed ID: 17151057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In silico ordinary differential equation/partial differential equation hemodialysis model estimates methadone removal during dialysis.
    Linares OA; Schiesser WE; Fudin J; Pham TC; Bettinger JJ; Mathew RO; Daly AL
    J Pain Res; 2015; 8():417-29. PubMed ID: 26229501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of cornea material stiffness on measured intraocular pressure.
    Kwon TH; Ghaboussi J; Pecknold DA; Hashash YM
    J Biomech; 2008; 41(8):1707-13. PubMed ID: 18455173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical study on human cornea and modified multiparametric correction equation for Goldmann applanation tonometer.
    Khan MA
    J Mech Behav Biomed Mater; 2014 Feb; 30():91-102. PubMed ID: 24269944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical discretization-based estimation methods for ordinary differential equation models via penalized spline smoothing with applications in biomedical research.
    Wu H; Xue H; Kumar A
    Biometrics; 2012 Jun; 68(2):344-52. PubMed ID: 22376200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.