These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 25114178)
1. An intracellular antifreeze protein from an Antarctic microalga that responds to various environmental stresses. Gwak Y; Jung W; Lee Y; Kim JS; Kim CG; Ju JH; Song C; Hyun JK; Jin E FASEB J; 2014 Nov; 28(11):4924-35. PubMed ID: 25114178 [TBL] [Abstract][Full Text] [Related]
2. Identification and Characterization of an Isoform Antifreeze Protein from the Antarctic Marine Diatom, Chaetoceros neogracile and Suggestion of the Core Region. Kim M; Gwak Y; Jung W; Jin E Mar Drugs; 2017 Oct; 15(10):. PubMed ID: 29057803 [TBL] [Abstract][Full Text] [Related]
3. Antifreeze protein in Antarctic marine diatom, Chaetoceros neogracile. Gwak IG; Jung WS; Kim HJ; Kang SH; Jin E Mar Biotechnol (NY); 2010 Nov; 12(6):630-9. PubMed ID: 20024694 [TBL] [Abstract][Full Text] [Related]
4. A Ca2+-dependent bacterial antifreeze protein domain has a novel beta-helical ice-binding fold. Garnham CP; Gilbert JA; Hartman CP; Campbell RL; Laybourn-Parry J; Davies PL Biochem J; 2008 Apr; 411(1):171-80. PubMed ID: 18095937 [TBL] [Abstract][Full Text] [Related]
5. Hyperactive antifreeze protein from an Antarctic sea ice bacterium Colwellia sp. has a compound ice-binding site without repetitive sequences. Hanada Y; Nishimiya Y; Miura A; Tsuda S; Kondo H FEBS J; 2014 Aug; 281(16):3576-90. PubMed ID: 24938370 [TBL] [Abstract][Full Text] [Related]
6. Creating Anti-icing Surfaces via the Direct Immobilization of Antifreeze Proteins on Aluminum. Gwak Y; Park JI; Kim M; Kim HS; Kwon MJ; Oh SJ; Kim YP; Jin E Sci Rep; 2015 Jul; 5():12019. PubMed ID: 26153855 [TBL] [Abstract][Full Text] [Related]
7. Intermediate activity of midge antifreeze protein is due to a tyrosine-rich ice-binding site and atypical ice plane affinity. Basu K; Wasserman SS; Jeronimo PS; Graham LA; Davies PL FEBS J; 2016 Apr; 283(8):1504-15. PubMed ID: 26896764 [TBL] [Abstract][Full Text] [Related]
8. Structure-function relationship in the globular type III antifreeze protein: identification of a cluster of surface residues required for binding to ice. Chao H; Sönnichsen FD; DeLuca CI; Sykes BD; Davies PL Protein Sci; 1994 Oct; 3(10):1760-9. PubMed ID: 7849594 [TBL] [Abstract][Full Text] [Related]
9. Antifreeze activity enhancement by site directed mutagenesis on an antifreeze protein from the beetle Rhagium mordax. Friis DS; Kristiansen E; von Solms N; Ramløv H FEBS Lett; 2014 May; 588(9):1767-72. PubMed ID: 24681101 [TBL] [Abstract][Full Text] [Related]
10. Antifreeze protein from freeze-tolerant grass has a beta-roll fold with an irregularly structured ice-binding site. Middleton AJ; Marshall CB; Faucher F; Bar-Dolev M; Braslavsky I; Campbell RL; Walker VK; Davies PL J Mol Biol; 2012 Mar; 416(5):713-24. PubMed ID: 22306740 [TBL] [Abstract][Full Text] [Related]
11. New Cysteine-Rich Ice-Binding Protein Secreted from Antarctic Microalga, Chloromonas sp. Jung W; Campbell RL; Gwak Y; Kim JI; Davies PL; Jin E PLoS One; 2016; 11(4):e0154056. PubMed ID: 27097164 [TBL] [Abstract][Full Text] [Related]
12. The ice-binding site of Atlantic herring antifreeze protein corresponds to the carbohydrate-binding site of C-type lectins. Ewart KV; Li Z; Yang DS; Fletcher GL; Hew CL Biochemistry; 1998 Mar; 37(12):4080-5. PubMed ID: 9521729 [TBL] [Abstract][Full Text] [Related]
13. The effects of steric mutations on the structure of type III antifreeze protein and its interaction with ice. DeLuca CI; Davies PL; Ye Q; Jia Z J Mol Biol; 1998 Jan; 275(3):515-25. PubMed ID: 9466928 [TBL] [Abstract][Full Text] [Related]
14. Characterization of an antifreeze protein from the polar diatom Fragilariopsis cylindrus and its relevance in sea ice. Bayer-Giraldi M; Weikusat I; Besir H; Dieckmann G Cryobiology; 2011 Dec; 63(3):210-9. PubMed ID: 21906587 [TBL] [Abstract][Full Text] [Related]
15. Beta-helix structure and ice-binding properties of a hyperactive antifreeze protein from an insect. Graether SP; Kuiper MJ; Gagné SM; Walker VK; Jia Z; Sykes BD; Davies PL Nature; 2000 Jul; 406(6793):325-8. PubMed ID: 10917537 [TBL] [Abstract][Full Text] [Related]
16. Expression and characterization of an antifreeze protein from the perennial rye grass, Lolium perenne. Lauersen KJ; Brown A; Middleton A; Davies PL; Walker VK Cryobiology; 2011 Jun; 62(3):194-201. PubMed ID: 21457707 [TBL] [Abstract][Full Text] [Related]
17. Solution structures, dynamics, and ice growth inhibitory activity of peptide fragments derived from an antarctic yeast protein. Shah SH; Kar RK; Asmawi AA; Rahman MB; Murad AM; Mahadi NM; Basri M; Rahman RN; Salleh AB; Chatterjee S; Tejo BA; Bhunia A PLoS One; 2012; 7(11):e49788. PubMed ID: 23209600 [TBL] [Abstract][Full Text] [Related]
18. Frozen assembly of gold nanoparticles for rapid analysis of antifreeze protein activity. Park JI; Lee JH; Gwak Y; Kim HJ; Jin E; Kim YP Biosens Bioelectron; 2013 Mar; 41():752-7. PubMed ID: 23084754 [TBL] [Abstract][Full Text] [Related]
19. Ice surface reconstruction as antifreeze protein-induced morphological modification mechanism. Strom CS; Liu XY; Jia Z J Am Chem Soc; 2005 Jan; 127(1):428-40. PubMed ID: 15631494 [TBL] [Abstract][Full Text] [Related]
20. Computational study on ice growth inhibition of Antarctic bacterium antifreeze protein using coarse grained simulation. Nguyen H; Le L; Ho TB J Chem Phys; 2014 Jun; 140(22):225101. PubMed ID: 24929413 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]