These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 25114632)

  • 21. Ecofriendly and Nonvacuum Electrostatic Spray-Assisted Vapor Deposition of Cu(In,Ga)(S,Se)2 Thin Film Solar Cells.
    Hossain MA; Wang M; Choy KL
    ACS Appl Mater Interfaces; 2015 Oct; 7(40):22497-503. PubMed ID: 26390182
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Luminescent down-shifting CsPbBr
    Kim YC; Jeong HJ; Kim ST; Song YH; Kim BY; Kim JP; Kang BK; Yun JH; Jang JH
    Nanoscale; 2020 Jan; 12(2):558-562. PubMed ID: 31777889
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Comprehensive Study of One-Step Selenization Process for Cu(In
    Chen SC; Wang SW; Kuo SY; Juang JY; Lee PT; Luo CW; Wu KH; Kuo HC
    Nanoscale Res Lett; 2017 Dec; 12(1):208. PubMed ID: 28330186
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fabrication and characterization of silicon wire solar cells having ZnO nanorod antireflection coating on Al-doped ZnO seed layer.
    Baek SH; Noh BY; Park IK; Kim JH
    Nanoscale Res Lett; 2012 Jan; 7(1):29. PubMed ID: 22222067
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Employing Si solar cell technology to increase efficiency of ultra-thin Cu(In,Ga)Se
    Vermang B; Wätjen JT; Fjällström V; Rostvall F; Edoff M; Kotipalli R; Henry F; Flandre D
    Prog Photovolt; 2014 Oct; 22(10):1023-1029. PubMed ID: 26300619
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fingerprints Indicating Superior Properties of Internal Interfaces in Cu(In,Ga)Se
    Raghuwanshi M; Chugh M; Sozzi G; Kanevce A; Kühne TD; Mirhosseini H; Wuerz R; Cojocaru-Mirédin O
    Adv Mater; 2022 Sep; 34(37):e2203954. PubMed ID: 35900293
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural and antireflective properties of ZnO nanorods synthesized using the sputtered ZnO seed layer for solar cell applications.
    Ko YH; Yu JS
    J Nanosci Nanotechnol; 2010 Dec; 10(12):8095-101. PubMed ID: 21121301
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Voids and compositional inhomogeneities in Cu(In,Ga)Se
    Avancini E; Keller D; Carron R; Arroyo-Rojas Dasilva Y; Erni R; Priebe A; Di Napoli S; Carrisi M; Sozzi G; Menozzi R; Fu F; Buecheler S; Tiwari AN
    Sci Technol Adv Mater; 2018; 19(1):871-882. PubMed ID: 30479675
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Real-Time Optimization of Anti-Reflective Coatings for CIGS Solar Cells.
    Rajan G; Karki S; Collins RW; Podraza NJ; Marsillac S
    Materials (Basel); 2020 Sep; 13(19):. PubMed ID: 32987795
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cd-free CIGS solar cells with buffer layer based on the In2S3 derivatives.
    Kim K; Larina L; Yun JH; Yoon KH; Kwon H; Ahn BT
    Phys Chem Chem Phys; 2013 Jun; 15(23):9239-44. PubMed ID: 23657475
    [TBL] [Abstract][Full Text] [Related]  

  • 31. ALD-Zn
    Löckinger J; Nishiwaki S; Andres C; Erni R; Rossell MD; Romanyuk YE; Buecheler S; Tiwari AN
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):43603-43609. PubMed ID: 30462473
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient "light-soaking"-free inverted organic solar cells with aqueous solution processed low-temperature ZnO electron extraction layers.
    Wei W; Zhang C; Chen D; Wang Z; Zhu C; Zhang J; Lu X; Hao Y
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):13318-24. PubMed ID: 24308270
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Solution-processed Cu2ZnSnS4 superstrate solar cell using vertically aligned ZnO nanorods.
    Lee D; Yong K
    Nanotechnology; 2014 Feb; 25(6):065401. PubMed ID: 24434835
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of Anti-Reflection Coating Layer for Efficiency Enhancement of ZnO Dye-Sensitized Solar Cells.
    Chanta E; Bhoomanee C; Gardchareon A; Wongratanaphisan D; Phadungdhitidhada S; Choopun S
    J Nanosci Nanotechnol; 2015 Sep; 15(9):7136-40. PubMed ID: 26716298
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Controllable Growth of Ga Film Electrodeposited from Aqueous Solution and Cu(In,Ga)Se
    Bi J; Ao J; Gao Q; Zhang Z; Sun G; He Q; Zhou Z; Sun Y; Zhang Y
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):18682-18690. PubMed ID: 28530386
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of Post-Heat Treatment of ZnO:Al Transparent Electrode for Copper Indium Gallium Selenide Thin Film Solar Cell.
    Eom T; Park JE; Park SY; Park JH; Bweupe J; Lim D
    J Nanosci Nanotechnol; 2018 Sep; 18(9):6532-6535. PubMed ID: 29677828
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cu(In,Ga)(S,Se)₂ thin film solar cell with 10.7% conversion efficiency obtained by selenization of the Na-doped spray-pyrolyzed sulfide precursor film.
    Septina W; Kurihara M; Ikeda S; Nakajima Y; Hirano T; Kawasaki Y; Harada T; Matsumura M
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6472-9. PubMed ID: 25774908
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characteristics of Ga-Rich Cu(In, Ga)Se2 Solar Cells Grown on Ga-Doped ZnO Back Contact.
    Sun Q; Kim KB; Jeon CW
    J Nanosci Nanotechnol; 2016 May; 16(5):5053-7. PubMed ID: 27483870
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Large scale single-crystal Cu(In,Ga)Se2 nanotip arrays for high efficiency solar cell.
    Liu CH; Chen CH; Chen SY; Yen YT; Kuo WC; Liao YK; Juang JY; Kuo HC; Lai CH; Chen LJ; Chueh YL
    Nano Lett; 2011 Oct; 11(10):4443-8. PubMed ID: 21910452
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Highly efficient graphene-based Cu(In, Ga)Se₂ solar cells with large active area.
    Yin L; Zhang K; Luo H; Cheng G; Ma X; Xiong Z; Xiao X
    Nanoscale; 2014 Sep; 6(18):10879-86. PubMed ID: 25117579
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.