These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 25114981)

  • 21. All-in-One Piezo-Triboelectric Energy Harvester Module Based on Piezoceramic Nanofibers for Wearable Devices.
    Ji SH; Lee W; Yun JS
    ACS Appl Mater Interfaces; 2020 Apr; 12(16):18609-18616. PubMed ID: 32249574
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Flexible Piezoelectric Energy Harvester with Extremely High Power Generation Capability by Sandwich Structure Design Strategy.
    Fu J; Hou Y; Zheng M; Zhu M
    ACS Appl Mater Interfaces; 2020 Feb; 12(8):9766-9774. PubMed ID: 32013391
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Precipitation-Printed High-β Phase Poly(vinylidene fluoride) for Energy Harvesting.
    Tu R; Sprague E; Sodano HA
    ACS Appl Mater Interfaces; 2020 Dec; 12(52):58072-58081. PubMed ID: 33320534
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Understanding the Origin of Enhanced Piezoelectric Response in PVDF Matrices with Embedded ZnO Nanoparticles, from Polarizable Molecular Dynamics Simulations.
    Marmolejo-Tejada JM; De La Roche-Yepes J; Pérez-López CA; Taborda JAP; Ávila A; Jaramillo-Botero A
    J Chem Inf Model; 2021 Sep; 61(9):4537-4543. PubMed ID: 34519202
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lead-Free Bi
    Qin W; Zhou P; Qi Y; Zhang T
    Micromachines (Basel); 2020 Oct; 11(11):. PubMed ID: 33126645
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinetic Energy Harvesting for Wearable Medical Sensors.
    Gljušćić P; Zelenika S; Blažević D; Kamenar E
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31726683
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanofibers-Based Piezoelectric Energy Harvester for Self-Powered Wearable Technologies.
    Mokhtari F; Shamshirsaz M; Latifi M; Foroughi J
    Polymers (Basel); 2020 Nov; 12(11):. PubMed ID: 33207703
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A hybrid piezoelectric structure for wearable nanogenerators.
    Lee M; Chen CY; Wang S; Cha SN; Park YJ; Kim JM; Chou LJ; Wang ZL
    Adv Mater; 2012 Apr; 24(13):1759-64. PubMed ID: 22396355
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A hybrid strain and thermal energy harvester based on an infra-red sensitive Er
    Ghosh SK; Xie M; Bowen CR; Davies PR; Morgan DJ; Mandal D
    Sci Rep; 2017 Dec; 7(1):16703. PubMed ID: 29196713
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Breathable and Flexible Piezoelectric ZnO@PVDF Fibrous Nanogenerator for Wearable Applications.
    Kim M; Wu YS; Kan EC; Fan J
    Polymers (Basel); 2018 Jul; 10(7):. PubMed ID: 30960670
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Measurements of Generated Energy/Electrical Quantities from Locomotion Activities Using Piezoelectric Wearable Sensors for Body Motion Energy Harvesting.
    Proto A; Penhaker M; Bibbo D; Vala D; Conforto S; Schmid M
    Sensors (Basel); 2016 Apr; 16(4):. PubMed ID: 27077867
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wearable Woven Triboelectric Nanogenerator Utilizing Electrospun PVDF Nanofibers for Mechanical Energy Harvesting.
    Shaikh MO; Huang YB; Wang CC; Chuang CH
    Micromachines (Basel); 2019 Jun; 10(7):. PubMed ID: 31262093
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DNA-Assisted β-phase Nucleation and Alignment of Molecular Dipoles in PVDF Film: A Realization of Self-Poled Bioinspired Flexible Polymer Nanogenerator for Portable Electronic Devices.
    Tamang A; Ghosh SK; Garain S; Alam MM; Haeberle J; Henkel K; Schmeisser D; Mandal D
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16143-7. PubMed ID: 26189605
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Wearable Ball-Impact Piezoelectric Multi-Converters for Low-Frequency Energy Harvesting from Human Motion.
    Nastro A; Pienazza N; Baù M; Aceti P; Rouvala M; Ardito R; Ferrari M; Corigliano A; Ferrari V
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161520
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adjusting the resonant frequency of a PVDF bimorph power harvester through a corrugation-shaped harvesting structure.
    Hu H; Zhao C; Feng S; Hu Y; Chen C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Mar; 55(3):668-74. PubMed ID: 18407856
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Organo-Lead Halide Perovskite Induced Electroactive β-Phase in Porous PVDF Films: An Excellent Material for Photoactive Piezoelectric Energy Harvester and Photodetector.
    Sultana A; Sadhukhan P; Alam MM; Das S; Middya TR; Mandal D
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):4121-4130. PubMed ID: 29308647
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Natural Sugar-Assisted, Chemically Reinforced, Highly Durable Piezoorganic Nanogenerator with Superior Power Density for Self-Powered Wearable Electronics.
    Maity K; Garain S; Henkel K; Schmeißer D; Mandal D
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):44018-44032. PubMed ID: 30456939
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A spiral-shaped harvester with an improved harvesting element and an adaptive storage circuit.
    Hu H; Xue H; Hu Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Jun; 54(6):1177-87. PubMed ID: 17571816
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced Piezoelectricity of Electrospun Polyvinylidene Fluoride Fibers for Energy Harvesting.
    Szewczyk PK; Gradys A; Kim SK; Persano L; Marzec M; Kryshtal A; Busolo T; Toncelli A; Pisignano D; Bernasik A; Kar-Narayan S; Sajkiewicz P; Stachewicz U
    ACS Appl Mater Interfaces; 2020 Mar; 12(11):13575-13583. PubMed ID: 32090543
    [TBL] [Abstract][Full Text] [Related]  

  • 40. LiTaO
    Manchi P; Graham SA; Patnam H; Alluri NR; Kim SJ; Yu JS
    ACS Appl Mater Interfaces; 2021 Oct; 13(39):46526-46536. PubMed ID: 34546725
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.