These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 25115705)

  • 1. Modeling dynamic functional relationship networks and application to ex vivo human erythroid differentiation.
    Zhu F; Shi L; Li H; Eksi R; Engel JD; Guan Y
    Bioinformatics; 2014 Dec; 30(23):3325-33. PubMed ID: 25115705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulatory network inferred using expression data of small sample size: application and validation in erythroid system.
    Zhu F; Shi L; Engel JD; Guan Y
    Bioinformatics; 2015 Aug; 31(15):2537-44. PubMed ID: 25840044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A regulatory network governing Gata1 and Gata2 gene transcription orchestrates erythroid lineage differentiation.
    Moriguchi T; Yamamoto M
    Int J Hematol; 2014 Nov; 100(5):417-24. PubMed ID: 24638828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptome dynamics during human erythroid differentiation and development.
    Yang Y; Wang H; Chang KH; Qu H; Zhang Z; Xiong Q; Qi H; Cui P; Lin Q; Ruan X; Yang Y; Li Y; Shu C; Li Q; Wakeland EK; Yan J; Hu S; Fang X
    Genomics; 2013; 102(5-6):431-441. PubMed ID: 24121002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Network of Splice Isoforms for the Mouse.
    Li HD; Menon R; Eksi R; Guerler A; Zhang Y; Omenn GS; Guan Y
    Sci Rep; 2016 Apr; 6():24507. PubMed ID: 27079421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Putative regulators for the continuum of erythroid differentiation revealed by single-cell transcriptome of human BM and UCB cells.
    Huang P; Zhao Y; Zhong J; Zhang X; Liu Q; Qiu X; Chen S; Yan H; Hillyer C; Mohandas N; Pan X; Xu X
    Proc Natl Acad Sci U S A; 2020 Jun; 117(23):12868-12876. PubMed ID: 32457162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel roles for KLF1 in erythropoiesis revealed by mRNA-seq.
    Tallack MR; Magor GW; Dartigues B; Sun L; Huang S; Fittock JM; Fry SV; Glazov EA; Bailey TL; Perkins AC
    Genome Res; 2012 Dec; 22(12):2385-98. PubMed ID: 22835905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Algorithms for modeling global and context-specific functional relationship networks.
    Zhu F; Panwar B; Guan Y
    Brief Bioinform; 2016 Jul; 17(4):686-95. PubMed ID: 26254431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lentiviral-mediated knockdown during ex vivo erythropoiesis of human hematopoietic stem cells.
    Palii CG; Pasha R; Brand M
    J Vis Exp; 2011 Jul; (53):. PubMed ID: 21785407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stat and interferon genes identified by network analysis differentially regulate primitive and definitive erythropoiesis.
    Greenfest-Allen E; Malik J; Palis J; Stoeckert CJ
    BMC Syst Biol; 2013 May; 7():38. PubMed ID: 23675896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developmental transcriptome analysis of human erythropoiesis.
    Shi L; Lin YH; Sierant MC; Zhu F; Cui S; Guan Y; Sartor MA; Tanabe O; Lim KC; Engel JD
    Hum Mol Genet; 2014 Sep; 23(17):4528-42. PubMed ID: 24781209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GATA factor switching during erythroid differentiation.
    Kaneko H; Shimizu R; Yamamoto M
    Curr Opin Hematol; 2010 May; 17(3):163-8. PubMed ID: 20216212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A regulatory circuit comprising GATA1/2 switch and microRNA-27a/24 promotes erythropoiesis.
    Wang F; Zhu Y; Guo L; Dong L; Liu H; Yin H; Zhang Z; Li Y; Liu C; Ma Y; Song W; He A; Wang Q; Wang L; Zhang J; Li J; Yu J
    Nucleic Acids Res; 2014 Jan; 42(1):442-57. PubMed ID: 24049083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BaiHui: cross-species brain-specific network built with hundreds of hand-curated datasets.
    Li HD; Bai T; Sandford E; Burmeister M; Guan Y
    Bioinformatics; 2019 Jul; 35(14):2486-2488. PubMed ID: 30521009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global transcriptome analysis for identification of interactions between coding and noncoding RNAs during human erythroid differentiation.
    Ding N; Xi J; Li Y; Xie X; Shi J; Zhang Z; Li Y; Fang F; Wang S; Yue W; Pei X; Fang X
    Front Med; 2016 Sep; 10(3):297-310. PubMed ID: 27272188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human and murine erythropoiesis.
    An X; Schulz VP; Mohandas N; Gallagher PG
    Curr Opin Hematol; 2015 May; 22(3):206-11. PubMed ID: 25719574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting dynamic signaling network response under unseen perturbations.
    Zhu F; Guan Y
    Bioinformatics; 2014 Oct; 30(19):2772-8. PubMed ID: 24919880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The PAX-SIX-EYA-DACH network modulates GATA-FOG function in fly hematopoiesis and human erythropoiesis.
    Creed TM; Baldeosingh R; Eberly CL; Schlee CS; Kim M; Cutler JA; Pandey A; Civin CI; Fossett NG; Kingsbury TJ
    Development; 2020 Jan; 147(1):. PubMed ID: 31806659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach.
    Zoppoli P; Morganella S; Ceccarelli M
    BMC Bioinformatics; 2010 Mar; 11():154. PubMed ID: 20338053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MicroRNAs as components of regulatory networks controlling erythropoiesis.
    Azzouzi I; Schmugge M; Speer O
    Eur J Haematol; 2012 Jul; 89(1):1-9. PubMed ID: 22372390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.