BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 25115837)

  • 1. Automated formation of lipid membrane microarrays for ionic single-molecule sensing with protein nanopores.
    del Rio Martinez JM; Zaitseva E; Petersen S; Baaken G; Behrends JC
    Small; 2015 Jan; 11(1):119-25. PubMed ID: 25115837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanopore-based single-molecule mass spectrometry on a lipid membrane microarray.
    Baaken G; Ankri N; Schuler AK; Rühe J; Behrends JC
    ACS Nano; 2011 Oct; 5(10):8080-8. PubMed ID: 21932787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Planar microelectrode-cavity array for high-resolution and parallel electrical recording of membrane ionic currents.
    Baaken G; Sondermann M; Schlemmer C; Rühe J; Behrends JC
    Lab Chip; 2008 Jun; 8(6):938-44. PubMed ID: 18497915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multichannel simultaneous measurements of single-molecule translocation in alpha-hemolysin nanopore array.
    Osaki T; Suzuki H; Le Pioufle B; Takeuchi S
    Anal Chem; 2009 Dec; 81(24):9866-70. PubMed ID: 20000639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Droplet split-and-contact method for high-throughput transmembrane electrical recording.
    Tsuji Y; Kawano R; Osaki T; Kamiya K; Miki N; Takeuchi S
    Anal Chem; 2013 Nov; 85(22):10913-9. PubMed ID: 24134641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanopore unitary permeability measured by electrochemical and optical single transporter recording.
    Hemmler R; Böse G; Wagner R; Peters R
    Biophys J; 2005 Jun; 88(6):4000-7. PubMed ID: 15749773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of individual protein channels in lipid bilayers suspended in nanopores.
    Studer A; Han X; Winkler FK; Tiefenauer LX
    Colloids Surf B Biointerfaces; 2009 Oct; 73(2):325-31. PubMed ID: 19576736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transparent Nanopore Cavity Arrays Enable Highly Parallelized Optical Studies of Single Membrane Proteins on Chip.
    Diederichs T; Nguyen QH; Urban M; Tampé R; Tornow M
    Nano Lett; 2018 Jun; 18(6):3901-3910. PubMed ID: 29741381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipid bilayer microarray for parallel recording of transmembrane ion currents.
    Le Pioufle B; Suzuki H; Tabata KV; Noji H; Takeuchi S
    Anal Chem; 2008 Jan; 80(1):328-32. PubMed ID: 18001126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipid nanobilayers to host biological nanopores for DNA translocations.
    Göpfrich K; Kulkarni CV; Pambos OJ; Keyser UF
    Langmuir; 2013 Jan; 29(1):355-64. PubMed ID: 23214950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-molecule DNA detection using a novel SP1 protein nanopore.
    Wang HY; Li Y; Qin LX; Heyman A; Shoseyov O; Willner I; Long YT; Tian H
    Chem Commun (Camb); 2013 Feb; 49(17):1741-3. PubMed ID: 23340583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-molecule study of proteins by biological nanopore sensors.
    Wu D; Bi S; Zhang L; Yang J
    Sensors (Basel); 2014 Sep; 14(10):18211-22. PubMed ID: 25268917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurements of DNA immobilized in the alpha-hemolysin nanopore.
    Purnell R; Schmidt J
    Methods Mol Biol; 2012; 870():39-53. PubMed ID: 22528257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatable production of shippable bilayer chips by pin tool deposition for an ion channel measurement platform.
    Poulos JL; Jeon TJ; Schmidt JJ
    Biotechnol J; 2010 May; 5(5):511-4. PubMed ID: 20376846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A droplet microfluidic system for sequential generation of lipid bilayers and transmembrane electrical recordings.
    Czekalska MA; Kaminski TS; Jakiela S; Tanuj Sapra K; Bayley H; Garstecki P
    Lab Chip; 2015 Jan; 15(2):541-8. PubMed ID: 25412368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of lipid bilayers inside microfluidic channel array for monitoring membrane-embedded nanopores of phi29 DNA packaging nanomotor.
    Shim JS; Geng J; Ahn CH; Guo P
    Biomed Microdevices; 2012 Oct; 14(5):921-8. PubMed ID: 22773160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of nanopore-spanning lipid bilayers through liposome fusion.
    Kumar K; Isa L; Egner A; Schmidt R; Textor M; Reimhult E
    Langmuir; 2011 Sep; 27(17):10920-8. PubMed ID: 21749115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Nanopore Charge Decorations on the Translocation Dynamics of DNA.
    Jou I; Muthukumar M
    Biophys J; 2017 Oct; 113(8):1664-1672. PubMed ID: 29045861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct introduction of single protein channels and pores into lipid bilayers.
    Holden MA; Bayley H
    J Am Chem Soc; 2005 May; 127(18):6502-3. PubMed ID: 15869249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein nanopore-based, single-molecule exploration of copper binding to an antimicrobial-derived, histidine-containing chimera peptide.
    Mereuta L; Schiopu I; Asandei A; Park Y; Hahm KS; Luchian T
    Langmuir; 2012 Dec; 28(49):17079-91. PubMed ID: 23140333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.