These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 25115849)

  • 41. Perspectives for Glyco-Engineering of Recombinant Biopharmaceuticals from Microalgae.
    Barolo L; Abbriano RM; Commault AS; George J; Kahlke T; Fabris M; Padula MP; Lopez A; Ralph PJ; Pernice M
    Cells; 2020 Mar; 9(3):. PubMed ID: 32151094
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Microalgae biorefinery: High value products perspectives.
    Chew KW; Yap JY; Show PL; Suan NH; Juan JC; Ling TC; Lee DJ; Chang JS
    Bioresour Technol; 2017 Apr; 229():53-62. PubMed ID: 28107722
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth.
    Trentacoste EM; Shrestha RP; Smith SR; Glé C; Hartmann AC; Hildebrand M; Gerwick WH
    Proc Natl Acad Sci U S A; 2013 Dec; 110(49):19748-53. PubMed ID: 24248374
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cultivation of Green Microalgae in Bubble Column Photobioreactors and an Assay for Neutral Lipids.
    Wang Q; Peng H; Higgins BT
    J Vis Exp; 2019 Jan; (143):. PubMed ID: 30663711
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The microalga Parachlorella kessleri--a novel highly efficient lipid producer.
    Li X; Přibyl P; Bišová K; Kawano S; Cepák V; Zachleder V; Čížková M; Brányiková I; Vítová M
    Biotechnol Bioeng; 2013 Jan; 110(1):97-107. PubMed ID: 22766749
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Slab waveguide photobioreactors for microalgae based biofuel production.
    Jung EE; Kalontarov M; Doud DF; Ooms MD; Angenent LT; Sinton D; Erickson D
    Lab Chip; 2012 Oct; 12(19):3740-5. PubMed ID: 22824859
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enhancing production of microalgal biopigments through metabolic and genetic engineering.
    Saini DK; Chakdar H; Pabbi S; Shukla P
    Crit Rev Food Sci Nutr; 2020; 60(3):391-405. PubMed ID: 30706720
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Development of a constitutive and an auto-inducible high-yield expression system for recombinant protein production in the microalga Nannochloropsis oceanica.
    de Grahl I; Rout SS; Maple-Grødem J; Reumann S
    Appl Microbiol Biotechnol; 2020 Oct; 104(20):8747-8760. PubMed ID: 32902683
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Algal omics: unlocking bioproduct diversity in algae cell factories.
    Guarnieri MT; Pienkos PT
    Photosynth Res; 2015 Mar; 123(3):255-63. PubMed ID: 24627032
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Gravimetric enrichment of high lipid and starch accumulating microalgae.
    Hassanpour M; Abbasabadi M; Ebrahimi S; Hosseini M; Sheikhbaglou A
    Bioresour Technol; 2015 Nov; 196():17-21. PubMed ID: 26218537
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cultivation of Neochloris oleoabundans in bubble column photobioreactor with or without localized deoxygenation.
    Peng L; Zhang Z; Cheng P; Wang Z; Lan CQ
    Bioresour Technol; 2016 Apr; 206():255-263. PubMed ID: 26866761
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Membrane technology in microalgae cultivation and harvesting: a review.
    Bilad MR; Arafat HA; Vankelecom IFJ
    Biotechnol Adv; 2014 Nov; 32(7):1283-1300. PubMed ID: 25109678
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Expression of the heterologous Dunaliella tertiolecta fatty acyl-ACP thioesterase leads to increased lipid production in Chlamydomonas reinhardtii.
    Tan KW; Lee YK
    J Biotechnol; 2017 Apr; 247():60-67. PubMed ID: 28279815
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Chlamydomonas reinhardtii as a viable platform for the production of recombinant proteins: current status and perspectives.
    Rosales-Mendoza S; Paz-Maldonado LM; Soria-Guerra RE
    Plant Cell Rep; 2012 Mar; 31(3):479-94. PubMed ID: 22080228
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bio-Based Products from Microalgae Cultivated in Digestates.
    Koutra E; Economou CN; Tsafrakidou P; Kornaros M
    Trends Biotechnol; 2018 Aug; 36(8):819-833. PubMed ID: 29605178
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Progress in physicochemical parameters of microalgae cultivation for biofuel production.
    Hossain N; Mahlia TMI
    Crit Rev Biotechnol; 2019 Sep; 39(6):835-859. PubMed ID: 31185749
    [TBL] [Abstract][Full Text] [Related]  

  • 57. CRISPR-Cas9 System for Genome Engineering of Photosynthetic Microalgae.
    Patel VK; Soni N; Prasad V; Sapre A; Dasgupta S; Bhadra B
    Mol Biotechnol; 2019 Aug; 61(8):541-561. PubMed ID: 31140149
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Production of Biopharmaceuticals in E. coli: Current Scenario and Future Perspectives.
    Baeshen MN; Al-Hejin AM; Bora RS; Ahmed MM; Ramadan HA; Saini KS; Baeshen NA; Redwan EM
    J Microbiol Biotechnol; 2015 Jul; 25(7):953-62. PubMed ID: 25737124
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Using transgenic plants and modified plant viruses for the development of treatments for human diseases.
    Loh HS; Green BJ; Yusibov V
    Curr Opin Virol; 2017 Oct; 26():81-89. PubMed ID: 28800551
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Selection of Culture Conditions and Cell Morphology for Biocompatible Extraction of β-Carotene from
    Tanguy G; Legat A; Gonçalves O; Marchal L; Schoefs B
    Mar Drugs; 2021 Nov; 19(11):. PubMed ID: 34822519
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.