These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 25116032)

  • 21. A novel axial-stress bioreactor system combined with a substance exchanger for tissue engineering of 3D constructs.
    Li ST; Liu Y; Zhou Q; Lue RF; Song L; Dong SW; Guo P; Kopjar B
    Tissue Eng Part C Methods; 2014 Mar; 20(3):205-14. PubMed ID: 23822092
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Teratoma formation of human embryonic stem cells in three-dimensional perfusion culture bioreactors.
    Stachelscheid H; Wulf-Goldenberg A; Eckert K; Jensen J; Edsbagge J; Björquist P; Rivero M; Strehl R; Jozefczuk J; Prigione A; Adjaye J; Urbaniak T; Bussmann P; Zeilinger K; Gerlach JC
    J Tissue Eng Regen Med; 2013 Sep; 7(9):729-41. PubMed ID: 22438087
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Strategy for achieving standardized bone models.
    Hadida M; Marchat D
    Biotechnol Bioeng; 2020 Jan; 117(1):251-271. PubMed ID: 31531968
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling tissue morphogenesis and cancer in 3D.
    Yamada KM; Cukierman E
    Cell; 2007 Aug; 130(4):601-10. PubMed ID: 17719539
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3D culture of osteoblast-like cells by unidirectional or oscillatory flow for bone tissue engineering.
    Du D; Furukawa KS; Ushida T
    Biotechnol Bioeng; 2009 Apr; 102(6):1670-8. PubMed ID: 19160373
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Rotating three-dimensional dynamic culture of osteoblasts seeded on segmental scaffolds with controlled internal channel architectures for construction of segmental tissue engineered bone in vitro].
    Wang L; Wang Z; Li X; Li DC; Xu SF; Lu BH
    Zhonghua Yi Xue Za Zhi; 2007 Jan; 87(3):200-3. PubMed ID: 17425853
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 3D sample preparation for orthopaedic tissue engineering bioreactors.
    Cartmell SH; Rathbone S; Jones G; Hidalgo-Bastida LA
    Methods Mol Biol; 2011; 695():61-76. PubMed ID: 21042966
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model.
    Chang R; Emami K; Wu H; Sun W
    Biofabrication; 2010 Dec; 2(4):045004. PubMed ID: 21079286
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ectopic bone formation in collagen sponge self-assembled peptide-amphiphile nanofibers hybrid scaffold in a perfusion culture bioreactor.
    Hosseinkhani H; Hosseinkhani M; Tian F; Kobayashi H; Tabata Y
    Biomaterials; 2006 Oct; 27(29):5089-98. PubMed ID: 16782187
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioreactors for connective tissue engineering: design and monitoring innovations.
    El Haj AJ; Hampson K; Gogniat G
    Adv Biochem Eng Biotechnol; 2009; 112():81-93. PubMed ID: 19290498
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [A new loading bioreactor for bone tissue-engineering applications].
    Zhang C; Zhang X; Wang F; Wu J; Wang Y; Lu Q
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Aug; 22(4):804-8, 832. PubMed ID: 16156278
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Perfusion flow bioreactor for 3D in situ imaging: investigating cell/biomaterials interactions.
    Stephens JS; Cooper JA; Phelan FR; Dunkers JP
    Biotechnol Bioeng; 2007 Jul; 97(4):952-61. PubMed ID: 17149772
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanical strain using 2D and 3D bioreactors induces osteogenesis: implications for bone tissue engineering.
    van Griensven M; Diederichs S; Roeker S; Boehm S; Peterbauer A; Wolbank S; Riechers D; Stahl F; Kasper C
    Adv Biochem Eng Biotechnol; 2009; 112():95-123. PubMed ID: 19290499
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Three-dimensional models of cancer for pharmacology and cancer cell biology: capturing tumor complexity in vitro/ex vivo.
    Hickman JA; Graeser R; de Hoogt R; Vidic S; Brito C; Gutekunst M; van der Kuip H;
    Biotechnol J; 2014 Sep; 9(9):1115-28. PubMed ID: 25174503
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biological and biophysical principles in extracorporal bone tissue engineering. Part II.
    Wiesmann HP; Joos U; Meyer U
    Int J Oral Maxillofac Surg; 2004 Sep; 33(6):523-30. PubMed ID: 15308249
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Flow cytometric cell cycle analysis of muscle precursor cells cultured within 3D scaffolds in a perfusion bioreactor.
    Flaibani M; Luni C; Sbalchiero E; Elvassore N
    Biotechnol Prog; 2009; 25(1):286-95. PubMed ID: 19224607
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A computational tool for the upscaling of regular scaffolds during in vitro perfusion culture.
    Truscello S; Schrooten J; Van Oosterwyck H
    Tissue Eng Part C Methods; 2011 Jun; 17(6):619-30. PubMed ID: 21332298
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of flow perfusion on the osteogenic differentiation of bone marrow stromal cells cultured on starch-based three-dimensional scaffolds.
    Gomes ME; Sikavitsas VI; Behravesh E; Reis RL; Mikos AG
    J Biomed Mater Res A; 2003 Oct; 67(1):87-95. PubMed ID: 14517865
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A three-dimensional osteogenic tissue model for the study of metastatic tumor cell interactions with bone.
    Mastro AM; Vogler EA
    Cancer Res; 2009 May; 69(10):4097-100. PubMed ID: 19435905
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Scaffolds based bone tissue engineering: the role of chitosan.
    Costa-Pinto AR; Reis RL; Neves NM
    Tissue Eng Part B Rev; 2011 Oct; 17(5):331-47. PubMed ID: 21810029
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.