These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 25116032)

  • 41. Prediction of the micro-fluid dynamic environment imposed to three-dimensional engineered cell systems in bioreactors.
    Boschetti F; Raimondi MT; Migliavacca F; Dubini G
    J Biomech; 2006; 39(3):418-25. PubMed ID: 16389082
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Visualizing feasible operating ranges within tissue engineering systems using a "windows of operation" approach: a perfusion-scaffold bioreactor case study.
    McCoy RJ; O'Brien FJ
    Biotechnol Bioeng; 2012 Dec; 109(12):3161-71. PubMed ID: 22627891
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Synchrotron imaging techniques for bone and cartilage tissue engineering: potential, current trends, and future directions.
    Olubamiji AD; Izadifar Z; Chen DX
    Tissue Eng Part B Rev; 2014 Oct; 20(5):503-22. PubMed ID: 24517187
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Developments in three-dimensional cell culture technology aimed at improving the accuracy of in vitro analyses.
    Maltman DJ; Przyborski SA
    Biochem Soc Trans; 2010 Aug; 38(4):1072-5. PubMed ID: 20659006
    [TBL] [Abstract][Full Text] [Related]  

  • 45. 3D cell culture systems: advantages and applications.
    Ravi M; Paramesh V; Kaviya SR; Anuradha E; Solomon FD
    J Cell Physiol; 2015 Jan; 230(1):16-26. PubMed ID: 24912145
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Integration of hollow fiber membranes improves nutrient supply in three-dimensional tissue constructs.
    Bettahalli NM; Vicente J; Moroni L; Higuera GA; van Blitterswijk CA; Wessling M; Stamatialis DF
    Acta Biomater; 2011 Sep; 7(9):3312-24. PubMed ID: 21704736
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Deformation simulation of cells seeded on a collagen-GAG scaffold in a flow perfusion bioreactor using a sequential 3D CFD-elastostatics model.
    Jungreuthmayer C; Jaasma MJ; Al-Munajjed AA; Zanghellini J; Kelly DJ; O'Brien FJ
    Med Eng Phys; 2009 May; 31(4):420-7. PubMed ID: 19109048
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Direct compression as an appropriately mechanical environment in bone tissue reconstruction in vitro.
    Chunqiu Z; Xizheng Z; Han W; Daqing H; Jing G
    Med Hypotheses; 2006; 67(6):1414-8. PubMed ID: 16846697
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An in vitro assessment of a cell-containing collagenous extracellular matrix-like scaffold for bone tissue engineering.
    Pedraza CE; Marelli B; Chicatun F; McKee MD; Nazhat SN
    Tissue Eng Part A; 2010 Mar; 16(3):781-93. PubMed ID: 19778181
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Automating the processing steps for obtaining bone tissue-engineered substitutes: from imaging tools to bioreactors.
    Costa PF; Martins A; Neves NM; Gomes ME; Reis RL
    Tissue Eng Part B Rev; 2014 Dec; 20(6):567-77. PubMed ID: 24673688
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Three-dimensional in vitro tumor models for cancer research and drug evaluation.
    Xu X; Farach-Carson MC; Jia X
    Biotechnol Adv; 2014 Nov; 32(7):1256-1268. PubMed ID: 25116894
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Three-Dimensional Rotating Wall Vessel-Derived Cell Culture Models for Studying Virus-Host Interactions.
    Gardner JK; Herbst-Kralovetz MM
    Viruses; 2016 Nov; 8(11):. PubMed ID: 27834891
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bioreactor engineering of stem cell environments.
    Tandon N; Marolt D; Cimetta E; Vunjak-Novakovic G
    Biotechnol Adv; 2013 Nov; 31(7):1020-31. PubMed ID: 23531529
    [TBL] [Abstract][Full Text] [Related]  

  • 54. "Culture shock" from the bone cell's perspective: emulating physiological conditions for mechanobiological investigations.
    Sorkin AM; Dee KC; Knothe Tate ML
    Am J Physiol Cell Physiol; 2004 Dec; 287(6):C1527-36. PubMed ID: 15317661
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The famous versus the inconvenient - or the dawn and the rise of 3D-culture systems.
    Altmann B; Welle A; Giselbrecht S; Truckenmüller R; Gottwald E
    World J Stem Cells; 2009 Dec; 1(1):43-8. PubMed ID: 21607106
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Journey into Bone Models: A Review.
    Scheinpflug J; Pfeiffenberger M; Damerau A; Schwarz F; Textor M; Lang A; Schulze F
    Genes (Basel); 2018 May; 9(5):. PubMed ID: 29748516
    [TBL] [Abstract][Full Text] [Related]  

  • 57. 3d Tissue Engineered In Vitro Models Of Cancer In Bone.
    Sitarski AM; Fairfield H; Falank C; Reagan MR
    ACS Biomater Sci Eng; 2018 Feb; 4(2):324-336. PubMed ID: 29756030
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Go with the flow: modeling unique biological flows in engineered
    Wasson EM; Dubbin K; Moya ML
    Lab Chip; 2021 Jun; 21(11):2095-2120. PubMed ID: 34008661
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Advances and Current Challenges in Intestinal
    Costa J; Ahluwalia A
    Front Bioeng Biotechnol; 2019; 7():144. PubMed ID: 31275931
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The Development of a Three-Dimensional Platform for Patient-Derived Ovarian Cancer Tissue Models: A Systematic Literature Review.
    Sevinyan L; Gupta P; Velliou E; Madhuri TK
    Cancers (Basel); 2022 Nov; 14(22):. PubMed ID: 36428724
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.