These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
357 related articles for article (PubMed ID: 25116128)
1. Improved electrical performance and bias stability of solution-processed active bilayer structure of indium zinc oxide based TFT. Seo JS; Bae BS ACS Appl Mater Interfaces; 2014 Sep; 6(17):15335-43. PubMed ID: 25116128 [TBL] [Abstract][Full Text] [Related]
2. Optimization of the Solution-Based Indium-Zinc Oxide/Zinc-Tin Oxide Channel Layer for Thin-Film Transistors. Lim K; Choi P; Kim S; Kim H; Kim M; Lee J; Hyeon Y; Koo K; Choi B J Nanosci Nanotechnol; 2018 Sep; 18(9):5913-5918. PubMed ID: 29677716 [TBL] [Abstract][Full Text] [Related]
3. Density of states-based design of metal oxide thin-film transistors for high mobility and superior photostability. Kim HS; Park JS; Jeong HK; Son KS; Kim TS; Seon JB; Lee E; Chung JG; Kim DH; Ryu M; Lee SY ACS Appl Mater Interfaces; 2012 Oct; 4(10):5416-21. PubMed ID: 22957907 [TBL] [Abstract][Full Text] [Related]
4. Simple method to enhance positive bias stress stability of In-Ga-Zn-O thin-film transistors using a vertically graded oxygen-vacancy active layer. Park JH; Kim YG; Yoon S; Hong S; Kim HJ ACS Appl Mater Interfaces; 2014 Dec; 6(23):21363-8. PubMed ID: 25402628 [TBL] [Abstract][Full Text] [Related]
5. Self-aligned top-gate amorphous indium zinc oxide thin-film transistors exceeding low-temperature poly-Si transistor performance. Park JC; Lee HN; Im S ACS Appl Mater Interfaces; 2013 Aug; 5(15):6990-5. PubMed ID: 23823486 [TBL] [Abstract][Full Text] [Related]
6. Flexible and High-Performance Amorphous Indium Zinc Oxide Thin-Film Transistor Using Low-Temperature Atomic Layer Deposition. Sheng J; Lee HJ; Oh S; Park JS ACS Appl Mater Interfaces; 2016 Dec; 8(49):33821-33828. PubMed ID: 27960372 [TBL] [Abstract][Full Text] [Related]
7. Effects of solution temperature on solution-processed high-performance metal oxide thin-film transistors. Lee KH; Park JH; Yoo YB; Jang WS; Oh JY; Chae SS; Moon KJ; Myoung JM; Baik HK ACS Appl Mater Interfaces; 2013 Apr; 5(7):2585-92. PubMed ID: 23461268 [TBL] [Abstract][Full Text] [Related]
8. Synergistic approach to high-performance oxide thin film transistors using a bilayer channel architecture. Yu X; Zhou N; Smith J; Lin H; Stallings K; Yu J; Marks TJ; Facchetti A ACS Appl Mater Interfaces; 2013 Aug; 5(16):7983-8. PubMed ID: 23876148 [TBL] [Abstract][Full Text] [Related]
9. Performance Improvement of In-Ga-Zn Oxide Thin-Film Transistors by Excimer Laser Annealing. Zhang X; Li Y; Li Y; Xie X; Yin L Micromachines (Basel); 2024 Jan; 15(2):. PubMed ID: 38398954 [TBL] [Abstract][Full Text] [Related]
10. Improving Thermal Stability of Solution-Processed Indium Zinc Oxide Thin-Film Transistors by Praseodymium Oxide Doping. Li M; Zhang W; Chen W; Li M; Wu W; Xu H; Zou J; Tao H; Wang L; Xu M; Peng J ACS Appl Mater Interfaces; 2018 Aug; 10(34):28764-28771. PubMed ID: 30074382 [TBL] [Abstract][Full Text] [Related]
11. Solution-processed flexible fluorine-doped indium zinc oxide thin-film transistors fabricated on plastic film at low temperature. Seo JS; Jeon JH; Hwang YH; Park H; Ryu M; Park SH; Bae BS Sci Rep; 2013; 3():2085. PubMed ID: 23803977 [TBL] [Abstract][Full Text] [Related]
12. Investigation on Atomic Bonding Structure of Solution-Processed Indium-Zinc-Oxide Semiconductors According to Doped Indium Content and Its Effects on the Transistor Performance. Kim D; Lee H; Kim B; Baang S; Ejderha K; Bae JH; Park J Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36234102 [TBL] [Abstract][Full Text] [Related]
13. Investigation of the Electrical Characteristics of Bilayer ZnO/In₂O₃ Thin-Film Transistors Fabricated by Solution Processing. Lee H; Zhang X; Kim JW; Kim EJ; Park J Materials (Basel); 2018 Oct; 11(11):. PubMed ID: 30373128 [TBL] [Abstract][Full Text] [Related]
14. Silicon Cations Intermixed Indium Zinc Oxide Interface for High-Performance Thin-Film Transistors Using a Solution Process. Na JW; Rim YS; Kim HJ; Lee JH; Hong S; Kim HJ ACS Appl Mater Interfaces; 2017 Sep; 9(35):29849-29856. PubMed ID: 28812360 [TBL] [Abstract][Full Text] [Related]
15. High-Performance Thin Film Transistor with an Neodymium-Doped Indium Zinc Oxide/Al₂O₃ Nanolaminate Structure Processed at Room Temperature. Yao R; Li X; Zheng Z; Zhang X; Xiong M; Xiao S; Ning H; Wang X; Wu Y; Peng J Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30275382 [TBL] [Abstract][Full Text] [Related]
16. Optically transparent thin-film transistors based on 2D multilayer MoS₂ and indium zinc oxide electrodes. Kwon J; Hong YK; Kwon HJ; Park YJ; Yoo B; Kim J; Grigoropoulos CP; Oh MS; Kim S Nanotechnology; 2015 Jan; 26(3):035202. PubMed ID: 25548952 [TBL] [Abstract][Full Text] [Related]
17. Comparative Study of Atomic Layer Deposited Indium-Based Oxide Transistors with a Fermi Energy Level-Engineered Heterojunction Structure Channel through a Cation Combinatorial Approach. Cho MH; Choi CH; Jeong JK ACS Appl Mater Interfaces; 2022 Apr; 14(16):18646-18661. PubMed ID: 35426670 [TBL] [Abstract][Full Text] [Related]
18. Hafnium Incorporation in InZnO Thin Film Transistors as a Carrier Suppressor. Lee D; Choi P; Park A; Jeon W; Choi D; Lee S; Choi B J Nanosci Nanotechnol; 2020 Nov; 20(11):6675-6678. PubMed ID: 32604495 [TBL] [Abstract][Full Text] [Related]
19. Solution-Based Indium-Zinc Oxide/Indium-Gallium-Zinc Oxide Double-Channel Thin-Film Transistors with Incorporated Hydrogen Peroxide. Jeon W; Choi P; Park A; Lee D; Choi D; Lee S; Choi B J Nanosci Nanotechnol; 2020 Nov; 20(11):6643-6647. PubMed ID: 32604489 [TBL] [Abstract][Full Text] [Related]
20. Damage-free back channel wet-etch process in amorphous indium-zinc-oxide thin-film transistors using a carbon-nanofilm barrier layer. Luo D; Zhao M; Xu M; Li M; Chen Z; Wang L; Zou J; Tao H; Wang L; Peng J ACS Appl Mater Interfaces; 2014 Jul; 6(14):11318-25. PubMed ID: 24969359 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]