These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 25116490)

  • 1. Removal of fluoride and arsenic by pilot vertical-flow constructed wetlands using soil and coal cinder as substrate.
    Li J; Liu X; Yu Z; Yi X; Ju Y; Huang J; Liu R
    Water Sci Technol; 2014; 70(4):620-6. PubMed ID: 25116490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of Fluoride and Arsenic by a Hybrid Constructed Wetland System.
    Lu H; Li J; Liu X; Yu Z; Liu R
    Chem Biodivers; 2019 Jul; 16(7):e1900078. PubMed ID: 31141309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Converter slag-coal cinder columns for the removal of phosphorous and other pollutants.
    Yang J; Wang S; Lu Z; Yang J; Lou S
    J Hazard Mater; 2009 Aug; 168(1):331-7. PubMed ID: 19286316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Remediation of aquaculture water in the estuarine wetlands using coal cinder-zeolite balls/reed wetland combination strategy.
    Tian W; Qiao K; Yu H; Bai J; Jin X; Liu Q; Zhao J
    J Environ Manage; 2016 Oct; 181():261-268. PubMed ID: 27372248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparative study of removal of fluoride from contaminated water using shale collected from different coal mines in India.
    Biswas G; Dutta M; Dutta S; Adhikari K
    Environ Sci Pollut Res Int; 2016 May; 23(10):9418-31. PubMed ID: 26620857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing the removal of arsenic, boron and heavy metals in subsurface flow constructed wetlands using different supporting media.
    Allende KL; Fletcher TD; Sun G
    Water Sci Technol; 2011; 63(11):2612-8. PubMed ID: 22049756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of hydrated silica, fluoride and arsenic from groundwater by electrocoagulation using a continuous reactor with a twelve-cell stack.
    Rosales M; Coreño O; Nava JL
    Chemosphere; 2018 Nov; 211():149-155. PubMed ID: 30071426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance of Eleocharis macrostachya and its importance for arsenic retention in constructed wetlands.
    Olmos-Márquez MA; Alarcón-Herrera MT; Martín-Domínguez IR
    Environ Sci Pollut Res Int; 2012 Mar; 19(3):763-71. PubMed ID: 21935698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arsenic and fluoride removal from groundwater by electrocoagulation using a continuous filter-press reactor.
    Guzmán A; Nava JL; Coreño O; Rodríguez I; Gutiérrez S
    Chemosphere; 2016 Feb; 144():2113-20. PubMed ID: 26583293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorus removal by expanded clay--six years of pilot-scale constructed wetlands experience.
    Mateus DM; Pinho HJ
    Water Environ Res; 2010 Feb; 82(2):128-37. PubMed ID: 20183979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molybdenum(VI) removal by using constructed wetlands with different filter media and plants.
    Lian JJ; Xu SG; Zhang YM; Han CW
    Water Sci Technol; 2013; 67(8):1859-66. PubMed ID: 23579843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of arsenic retention in constructed wetlands.
    Valles-Aragón MC; Alarcón-Herrera MT; Llorens E; Obradors-Prats J; Leyva A
    Environ Sci Pollut Res Int; 2017 Jan; 24(3):2394-2401. PubMed ID: 27815853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arsenic and fluoride contaminated groundwaters: A review of current technologies for contaminants removal.
    Jadhav SV; Bringas E; Yadav GD; Rathod VK; Ortiz I; Marathe KV
    J Environ Manage; 2015 Oct; 162():306-25. PubMed ID: 26265600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous arsenic and fluoride removal from synthetic and real groundwater by electrocoagulation process: Parametric and cost evaluation.
    Thakur LS; Mondal P
    J Environ Manage; 2017 Apr; 190():102-112. PubMed ID: 28040586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new efficient indigenous material for simultaneous removal of fluoride and inorganic arsenic species from groundwater.
    Kazi TG; Brahman KD; Baig JA; Afridi HI
    J Hazard Mater; 2018 Sep; 357():159-167. PubMed ID: 29886360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous removal of arsenic and fluoride from groundwater by coagulation-adsorption with polyaluminum chloride.
    Ingallinella AM; Pacini VA; Fernández RG; Vidoni RM; Sanguinetti G
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(11):1288-96. PubMed ID: 21879862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosorptive removal of inorganic arsenic species and fluoride from aqueous medium by the stem of Tecomella undulate.
    Brahman KD; Kazi TG; Baig JA; Afridi HI; Arain SS; Saraj S; Arain MB; Arain SA
    Chemosphere; 2016 May; 150():320-328. PubMed ID: 26921585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of Fe-Al-modified natural materials by an electrochemical method and chemical precipitation for the adsorption of F- and As(V).
    Vázquez Mejía G; Martínez-Miranda V; Fall C; Linares-Hernández I; Solache-Ríos M
    Environ Technol; 2016; 37(5):558-68. PubMed ID: 26362939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential for use of industrial waste materials as filter media for removal of Al, Mo, As, V and Ga from alkaline drainage in constructed wetlands--adsorption studies.
    Hua T; Haynes RJ; Zhou YF; Boullemant A; Chandrawana I
    Water Res; 2015 Mar; 71():32-41. PubMed ID: 25589434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arsenic remediation of drinking water using iron-oxide coated coal bottom ash.
    Mathieu JL; Gadgil AJ; Addy SE; Kowolik K
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Sep; 45(11):1446-60. PubMed ID: 20694883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.