BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

465 related articles for article (PubMed ID: 25116651)

  • 1. Luminescent and transparent nanopaper based on rare-earth up-converting nanoparticle grafted nanofibrillated cellulose derived from garlic skin.
    Zhao J; Wei Z; Feng X; Miao M; Sun L; Cao S; Shi L; Fang J
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):14945-51. PubMed ID: 25116651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Near-infrared emissive lanthanide hybridized nanofibrillated cellulose nanopaper as ultraviolet filter.
    Xue B; Zhang Z; Sun Y; Wang J; Jiang H; Du M; Chi C; Li X
    Carbohydr Polym; 2018 Apr; 186():176-183. PubMed ID: 29455976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strong and tough cellulose nanopaper with high specific surface area and porosity.
    Sehaqui H; Zhou Q; Ikkala O; Berglund LA
    Biomacromolecules; 2011 Oct; 12(10):3638-44. PubMed ID: 21888417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time.
    Benhamou K; Dufresne A; Magnin A; Mortha G; Kaddami H
    Carbohydr Polym; 2014 Jan; 99():74-83. PubMed ID: 24274481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clay nanopaper with tough cellulose nanofiber matrix for fire retardancy and gas barrier functions.
    Liu A; Walther A; Ikkala O; Belova L; Berglund LA
    Biomacromolecules; 2011 Mar; 12(3):633-41. PubMed ID: 21291221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solution-processed assembly of ultrathin transparent conductive cellulose nanopaper embedding AgNWs.
    Song Y; Jiang Y; Shi L; Cao S; Feng X; Miao M; Fang J
    Nanoscale; 2015 Aug; 7(32):13694-701. PubMed ID: 26214378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Holocellulose Nanofibers of High Molar Mass and Small Diameter for High-Strength Nanopaper.
    Galland S; Berthold F; Prakobna K; Berglund LA
    Biomacromolecules; 2015 Aug; 16(8):2427-35. PubMed ID: 26151837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-quality water-soluble and surface-functionalized upconversion nanocrystals as luminescent probes for bioimaging.
    Cao T; Yang Y; Gao Y; Zhou J; Li Z; Li F
    Biomaterials; 2011 Apr; 32(11):2959-68. PubMed ID: 21262531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-pot fabrication of flexible and luminescent nanofilm by in-situ radical polymerization of vinyl carbazole on nanofibrillated cellulose.
    Dias OAT; Konar S; Graziano A; Leão AL; Tjong J; Jaffer S; Sain M
    Carbohydr Polym; 2021 Jun; 262():117934. PubMed ID: 33838811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multifunctional rare-earth self-assembled nanosystem for tri-modal upconversion luminescence /fluorescence /positron emission tomography imaging.
    Liu Q; Chen M; Sun Y; Chen G; Yang T; Gao Y; Zhang X; Li F
    Biomaterials; 2011 Nov; 32(32):8243-53. PubMed ID: 21820170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of acetylated nanofibrillated cellulose from corn stalk microcrystalline cellulose and its reinforcing effect on starch films.
    Cheng L; Zhang D; Gu Z; Li Z; Hong Y; Li C
    Int J Biol Macromol; 2018 May; 111():959-966. PubMed ID: 29331537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conductive photoswitchable vanadium oxide nanopaper based on bacterial cellulose.
    Gutierrez J; Fernandes SC; Mondragon I; Tercjak A
    ChemSusChem; 2012 Dec; 5(12):2323-7. PubMed ID: 23060340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stretchable and strong cellulose nanopaper structures based on polymer-coated nanofiber networks: an alternative to nonwoven porous membranes from electrospinning.
    Sehaqui H; Morimune S; Nishino T; Berglund LA
    Biomacromolecules; 2012 Nov; 13(11):3661-7. PubMed ID: 23046114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transparent nanocellulosic multilayer thin films on polylactic acid with tunable gas barrier properties.
    Aulin C; Karabulut E; Tran A; Wågberg L; Lindström T
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):7352-9. PubMed ID: 23834391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Green in-situ synthesized silver nanoparticles embedded in bacterial cellulose nanopaper as a bionanocomposite plasmonic sensor.
    Pourreza N; Golmohammadi H; Naghdi T; Yousefi H
    Biosens Bioelectron; 2015 Dec; 74():353-9. PubMed ID: 26159156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extraction of cellulose nanofibrils from dry softwood pulp using high shear homogenization.
    Zhao J; Zhang W; Zhang X; Zhang X; Lu C; Deng Y
    Carbohydr Polym; 2013 Sep; 97(2):695-702. PubMed ID: 23911503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Paradigms and challenges for bioapplication of rare earth upconversion luminescent nanoparticles: small size and tunable emission/excitation spectra.
    Sun LD; Wang YF; Yan CH
    Acc Chem Res; 2014 Apr; 47(4):1001-9. PubMed ID: 24422455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual-Mode Luminescent Nanopaper Based on Ultrathin g-C3N4 Nanosheets Grafted with Rare-Earth Upconversion Nanoparticles.
    Zhao Y; Wei R; Feng X; Sun L; Liu P; Su Y; Shi L
    ACS Appl Mater Interfaces; 2016 Aug; 8(33):21555-62. PubMed ID: 27494116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biocomposites of nanofibrillated cellulose, polypyrrole, and silver nanoparticles with electroconductive and antimicrobial properties.
    Bober P; Liu J; Mikkonen KS; Ihalainen P; Pesonen M; Plumed-Ferrer C; von Wright A; Lindfors T; Xu C; Latonen RM
    Biomacromolecules; 2014 Oct; 15(10):3655-63. PubMed ID: 25162821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled synthesis of NaYF4 nanoparticles and upconversion properties of NaYF4:Yb, Er (Tm)/FC transparent nanocomposite thin films.
    Huang W; Lu C; Jiang C; Wang W; Song J; Ni Y; Xu Z
    J Colloid Interface Sci; 2012 Jun; 376(1):34-9. PubMed ID: 22444484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.