These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 25116683)

  • 21. 3D structural integrity and interactions of single-stranded protein-binding DNA in a functionalized nanopore.
    Mahmood MA; Ali W; Adnan A; Iqbal SM
    J Phys Chem B; 2014 Jun; 118(22):5799-806. PubMed ID: 24712502
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterizing and controlling the motion of ssDNA in a solid-state nanopore.
    Luan B; Martyna G; Stolovitzky G
    Biophys J; 2011 Nov; 101(9):2214-22. PubMed ID: 22067161
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spontaneous Transport of Single-Stranded DNA through Graphene-MoS
    Luan B; Zhou R
    ACS Nano; 2018 Apr; 12(4):3886-3891. PubMed ID: 29648440
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Diffusive dynamics of DNA unzipping in a nanopore.
    Stachiewicz A; Molski A
    J Comput Chem; 2016 Feb; 37(5):467-76. PubMed ID: 26519865
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Topological jamming of spontaneously knotted polyelectrolyte chains driven through a nanopore.
    Rosa A; Di Ventra M; Micheletti C
    Phys Rev Lett; 2012 Sep; 109(11):118301. PubMed ID: 23005684
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polymer capture by electro-osmotic flow of oppositely charged nanopores.
    Wong CT; Muthukumar M
    J Chem Phys; 2007 Apr; 126(16):164903. PubMed ID: 17477630
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Asymmetric ion transport through ion-channel-mimetic solid-state nanopores.
    Guo W; Tian Y; Jiang L
    Acc Chem Res; 2013 Dec; 46(12):2834-46. PubMed ID: 23713693
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electric-Field-Driven Translocation of ssDNA through Hydrophobic Nanopores.
    Haynes T; Smith IPS; Wallace EJ; Trick JL; Sansom MSP; Khalid S
    ACS Nano; 2018 Aug; 12(8):8208-8213. PubMed ID: 29985578
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coupling Effects of Electrostatic Interactions and Salt Concentration Gradient in Polymer Translocation through a Nanopore: A Coarse-Grained Molecular Dynamics Simulations Study.
    Dabhade A; Chauhan A; Chaudhury S
    Chemphyschem; 2023 Feb; 24(4):e202200666. PubMed ID: 36314101
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multi-resolution simulation of DNA transport through large synthetic nanostructures.
    Choudhary A; Maffeo C; Aksimentiev A
    Phys Chem Chem Phys; 2022 Feb; 24(5):2706-2716. PubMed ID: 35050282
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surface modification of solid-state nanopores for sticky-free translocation of single-stranded DNA.
    Tang Z; Lu B; Zhao Q; Wang J; Luo K; Yu D
    Small; 2014 Nov; 10(21):4332-9. PubMed ID: 25044955
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Entrance Effects Induced Rectified Ionic Transport in a Nanopore/Channel.
    Ma Y; Guo J; Jia L; Xie Y
    ACS Sens; 2018 Jan; 3(1):167-173. PubMed ID: 29235863
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Crowding-Induced DNA Translocation through a Protein Nanopore.
    Yao F; Peng X; Su Z; Tian L; Guo Y; Kang XF
    Anal Chem; 2020 Mar; 92(5):3827-3833. PubMed ID: 32048508
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Polymer translocation in solid-state nanopores: dependence of scaling behavior on pore dimensions and applied voltage.
    Edmonds CM; Hudiono YC; Ahmadi AG; Hesketh PJ; Nair S
    J Chem Phys; 2012 Feb; 136(6):065105. PubMed ID: 22360225
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Coarse-grained molecular dynamics study of wettability influence on protein translocation through solid nanopores.
    Liu Z; Shi X; Wu H
    Nanotechnology; 2019 Apr; 30(16):165701. PubMed ID: 30634172
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A coarse-grained MARTINI-like force field for DNA unzipping in nanopores.
    Stachiewicz A; Molski A
    J Comput Chem; 2015 May; 36(13):947-56. PubMed ID: 25706623
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deceleration of single-stranded DNA passing through a nanopore using a nanometre-sized bead structure.
    Goto Y; Haga T; Yanagi I; Yokoi T; Takeda K
    Sci Rep; 2015 Nov; 5():16640. PubMed ID: 26559466
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biphasic signals during nanopore translocation of DNA and nanoparticles due to strong ion cloud deformation.
    Sensale S; Peng Z; Chang HC
    Nanoscale; 2019 Dec; 11(47):22772-22779. PubMed ID: 31517378
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DNA translocation through an array of kinked nanopores.
    Chen Z; Jiang Y; Dunphy DR; Adams DP; Hodges C; Liu N; Zhang N; Xomeritakis G; Jin X; Aluru NR; Gaik SJ; Hillhouse HW; Brinker CJ
    Nat Mater; 2010 Aug; 9(8):667-75. PubMed ID: 20651807
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Slowing DNA Translocation in a Nanofluidic Field-Effect Transistor.
    Liu Y; Yobas L
    ACS Nano; 2016 Apr; 10(4):3985-94. PubMed ID: 27019102
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.