BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

528 related articles for article (PubMed ID: 25116685)

  • 1. Antibacterial surface treatment for orthopaedic implants.
    Gallo J; Holinka M; Moucha CS
    Int J Mol Sci; 2014 Aug; 15(8):13849-80. PubMed ID: 25116685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antibacterial coating of implants in orthopaedics and trauma: a classification proposal in an evolving panorama.
    Romanò CL; Scarponi S; Gallazzi E; Romanò D; Drago L
    J Orthop Surg Res; 2015 Oct; 10():157. PubMed ID: 26429342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zirconium Nitride Coating Reduced Staphylococcus epidermidis Biofilm Formation on Orthopaedic Implant Surfaces: An In Vitro Study.
    Pilz M; Staats K; Tobudic S; Assadian O; Presterl E; Windhager R; Holinka J
    Clin Orthop Relat Res; 2019 Feb; 477(2):461-466. PubMed ID: 30418277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antibacterial coatings on titanium implants.
    Zhao L; Chu PK; Zhang Y; Wu Z
    J Biomed Mater Res B Appl Biomater; 2009 Oct; 91(1):470-80. PubMed ID: 19637369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emerging antibacterial biomaterial strategies for the prevention of peri-implant inflammatory diseases.
    Bumgardner JD; Adatrow P; Haggard WO; Norowski PA
    Int J Oral Maxillofac Implants; 2011; 26(3):553-60. PubMed ID: 21691602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antibacterial surfaces for biomedical devices.
    Vasilev K; Cook J; Griesser HJ
    Expert Rev Med Devices; 2009 Sep; 6(5):553-67. PubMed ID: 19751126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anti-Periprosthetic Infection Strategies: From Implant Surface Topographical Engineering to Smart Drug-Releasing Coatings.
    Ghimire A; Song J
    ACS Appl Mater Interfaces; 2021 May; 13(18):20921-20937. PubMed ID: 33914499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antibacterial and Biocompatible Titanium-Copper Oxide Coating May Be a Potential Strategy to Reduce Periprosthetic Infection: An In Vitro Study.
    Norambuena GA; Patel R; Karau M; Wyles CC; Jannetto PJ; Bennet KE; Hanssen AD; Sierra RJ
    Clin Orthop Relat Res; 2017 Mar; 475(3):722-732. PubMed ID: 26847453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Megaprosthesis anti-bacterial coatings: A comprehensive translational review.
    Lex JR; Koucheki R; Stavropoulos NA; Michele JD; Toor JS; Tsoi K; Ferguson PC; Turcotte RE; Papagelopoulos PJ
    Acta Biomater; 2022 Mar; 140():136-148. PubMed ID: 34879295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of silver coating for arthroplasty components.
    Diez-Escudero A; Hailer NP
    Bone Joint J; 2021 Mar; 103-B(3):423-429. PubMed ID: 33641432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multifunctional coatings to simultaneously promote osseointegration and prevent infection of orthopaedic implants.
    Raphel J; Holodniy M; Goodman SB; Heilshorn SC
    Biomaterials; 2016 Apr; 84():301-314. PubMed ID: 26851394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Research progress of antibacterial modification of orthopaedic implants surface].
    Zhang C; Wu Y; Xu Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2022 Apr; 36(4):511-516. PubMed ID: 35426294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanostructured materials for inhibition of bacterial adhesion in orthopedic implants: a minireview.
    Montanaro L; Campoccia D; Arciola CR
    Int J Artif Organs; 2008 Sep; 31(9):771-6. PubMed ID: 18924088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial Biofilm Formation on Biomaterials and Approaches to Its Treatment and Prevention.
    Li P; Yin R; Cheng J; Lin J
    Int J Mol Sci; 2023 Jul; 24(14):. PubMed ID: 37511440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface coating strategies to prevent biofilm formation on implant surfaces.
    Bruellhoff K; Fiedler J; Möller M; Groll J; Brenner RE
    Int J Artif Organs; 2010 Sep; 33(9):646-53. PubMed ID: 20890881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial adherence and biofilm formation on medical implants: a review.
    Veerachamy S; Yarlagadda T; Manivasagam G; Yarlagadda PK
    Proc Inst Mech Eng H; 2014 Oct; 228(10):1083-99. PubMed ID: 25406229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of antimicrobial effects of novel implant materials by testing the prevention of biofilm formation using a simple small scale medium-throughput growth inhibition assay.
    Patenge N; Arndt K; Eggert T; Zietz C; Kreikemeyer B; Bader R; Nebe B; Stranak V; Hippler R; Podbielski A
    Biofouling; 2012; 28(3):267-77. PubMed ID: 22435853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antimicrobial peptides on calcium phosphate-coated titanium for the prevention of implant-associated infections.
    Kazemzadeh-Narbat M; Kindrachuk J; Duan K; Jenssen H; Hancock RE; Wang R
    Biomaterials; 2010 Dec; 31(36):9519-26. PubMed ID: 20970848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomaterial strategies to reduce implant-associated infections.
    Qiu Y; Zhang N; An YH; Wen X
    Int J Artif Organs; 2007 Sep; 30(9):828-41. PubMed ID: 17918129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioactive glasses as delivery systems for antimicrobial agents.
    Rivadeneira J; Gorustovich A
    J Appl Microbiol; 2017 Jun; 122(6):1424-1437. PubMed ID: 28035706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.