These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 25116702)

  • 21. Hierarchical Porous Nickel Cobaltate Nanoneedle Arrays as Flexible Carbon-Protected Cathodes for High-Performance Lithium-Oxygen Batteries.
    Xue H; Wu S; Tang J; Gong H; He P; He J; Zhou H
    ACS Appl Mater Interfaces; 2016 Apr; 8(13):8427-35. PubMed ID: 26967936
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Engineering single crystalline Mn3O4 nano-octahedra with exposed highly active {011} facets for high performance lithium ion batteries.
    Huang SZ; Jin J; Cai Y; Li Y; Tan HY; Wang HE; Van Tendeloo G; Su BL
    Nanoscale; 2014 Jun; 6(12):6819-27. PubMed ID: 24828316
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Embedding NiCo2O4 nanoparticles into a 3DHPC assisted by CO2-expanded ethanol: a potential lithium-ion battery anode with high performance.
    Wang L; Zhuo L; Zhang C; Zhao F
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10813-20. PubMed ID: 24937364
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 2 D manganese vanadate nanoflakes as high-performance anode for lithium-ion batteries.
    Deng D; Zhang Y; Li G; Wang X; Gan LH; Jiang L; Wang CR
    Chem Asian J; 2014 May; 9(5):1265-9. PubMed ID: 24596336
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Highly porous structure strategy to improve the SnO2 electrode performance for lithium-ion batteries.
    Yang T; Lu B
    Phys Chem Chem Phys; 2014 Mar; 16(9):4115-21. PubMed ID: 24448608
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis of Na(1.25)V(3)O(8) nanobelts with excellent long-term stability for rechargeable lithium-ion batteries.
    Liang S; Chen T; Pan A; Liu D; Zhu Q; Cao G
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):11913-7. PubMed ID: 24147642
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Facile hydrothermal synthesis of porous TiO2 nanowire electrodes with high-rate capability for Li ion batteries.
    Shim HW; Lee DK; Cho IS; Hong KS; Kim DW
    Nanotechnology; 2010 Jun; 21(25):255706. PubMed ID: 20516576
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Single-crystalline bilayered V2O5 nanobelts for high-capacity sodium-ion batteries.
    Su D; Wang G
    ACS Nano; 2013 Dec; 7(12):11218-26. PubMed ID: 24206168
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High electrochemical performance of monodisperse NiCo₂O₂ mesoporous microspheres as an anode material for Li-ion batteries.
    Li J; Xiong S; Liu Y; Ju Z; Qian Y
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):981-8. PubMed ID: 23323836
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydrothermal Synthesis of Multiwalled Carbon Nanotube-Zinc Manganate Nanoparticles as Anode Materials for Lithium Ion Batteries.
    Mondal AK; Liu H; Xie X; Kretschmer K; Wang G
    Chempluschem; 2016 Apr; 81(4):399-405. PubMed ID: 31968747
    [TBL] [Abstract][Full Text] [Related]  

  • 31. NiCo2O4 nanostructure materials: morphology control and electrochemical energy storage.
    Zhang D; Yan H; Lu Y; Qiu K; Wang C; Zhang Y; Liu X; Luo J; Luo Y
    Dalton Trans; 2014 Nov; 43(42):15887-97. PubMed ID: 25230142
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In situ encapsulation of germanium clusters in carbon nanofibers: high-performance anodes for lithium-ion batteries.
    Wang W; Xiao Y; Wang X; Liu B; Cao M
    ChemSusChem; 2014 Oct; 7(10):2914-22. PubMed ID: 25154731
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In situ synthesis and electrochemical performance of MoO
    Wu QL; Zhao SX; Yu L; Yu LQ; Zheng XX; Wei G
    Dalton Trans; 2019 Sep; 48(34):12832-12838. PubMed ID: 31418005
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Facile and cost effective synthesis of mesoporous spinel NiCo2O4 as an anode for high lithium storage capacity.
    Jadhav HS; Kalubarme RS; Park CN; Kim J; Park CJ
    Nanoscale; 2014 Sep; 6(17):10071-6. PubMed ID: 25033093
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fast Preparation of Porous MnO/C Microspheres as Anode Materials for Lithium-Ion Batteries.
    Su J; Liang H; Gong XN; Lv XY; Long YF; Wen YX
    Nanomaterials (Basel); 2017 May; 7(6):. PubMed ID: 28587120
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrospun V2O5 nanostructures with controllable morphology as high-performance cathode materials for lithium-ion batteries.
    Wang HG; Ma DL; Huang Y; Zhang XB
    Chemistry; 2012 Jul; 18(29):8987-93. PubMed ID: 22689094
    [TBL] [Abstract][Full Text] [Related]  

  • 37. New synthesis of a Foamlike Fe3O4/C composite via a self-expanding process and its electrochemical performance as anode material for lithium-ion batteries.
    Wu F; Huang R; Mu D; Wu B; Chen S
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):19254-64. PubMed ID: 25285603
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hierarchical ZnO-Ag-C composite porous microspheres with superior electrochemical properties as anode materials for lithium ion batteries.
    Xie Q; Ma Y; Zeng D; Zhang X; Wang L; Yue G; Peng DL
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):19895-904. PubMed ID: 25350718
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Three-Dimensional (3D) Bicontinuous Hierarchically Porous Mn2O3 Single Crystals for High Performance Lithium-Ion Batteries.
    Huang SZ; Jin J; Cai Y; Li Y; Deng Z; Zeng JY; Liu J; Wang C; Hasan T; Su BL
    Sci Rep; 2015 Oct; 5():14686. PubMed ID: 26439102
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Facile and fast synthesis of porous TiO2 spheres for use in lithium ion batteries.
    Wang HE; Jin J; Cai Y; Xu JM; Chen DS; Zheng XF; Deng Z; Li Y; Bello I; Su BL
    J Colloid Interface Sci; 2014 Mar; 417():144-51. PubMed ID: 24407670
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.