BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 25116793)

  • 21. Golgi-dependent transport of cholesterol to the Chlamydia trachomatis inclusion.
    Carabeo RA; Mead DJ; Hackstadt T
    Proc Natl Acad Sci U S A; 2003 May; 100(11):6771-6. PubMed ID: 12743366
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reprogramming of host glutamine metabolism during Chlamydia trachomatis infection and its key role in peptidoglycan synthesis.
    Rajeeve K; Vollmuth N; Janaki-Raman S; Wulff TF; Baluapuri A; Dejure FR; Huber C; Fink J; Schmalhofer M; Schmitz W; Sivadasan R; Eilers M; Wolf E; Eisenreich W; Schulze A; Seibel J; Rudel T
    Nat Microbiol; 2020 Nov; 5(11):1390-1402. PubMed ID: 32747796
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cytoplasmic lipid droplets are translocated into the lumen of the Chlamydia trachomatis parasitophorous vacuole.
    Cocchiaro JL; Kumar Y; Fischer ER; Hackstadt T; Valdivia RH
    Proc Natl Acad Sci U S A; 2008 Jul; 105(27):9379-84. PubMed ID: 18591669
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Akt Phosphorylation Influences Persistent Chlamydial Infection and
    Huang X; Tan J; Chen X; Liu M; Zhu H; Li W; He Z; Han J; Ma C
    Front Cell Infect Microbiol; 2021; 11():675890. PubMed ID: 34169005
    [No Abstract]   [Full Text] [Related]  

  • 25. Chlamydia trachomatis Infection Leads to Defined Alterations to the Lipid Droplet Proteome in Epithelial Cells.
    Saka HA; Thompson JW; Chen YS; Dubois LG; Haas JT; Moseley A; Valdivia RH
    PLoS One; 2015; 10(4):e0124630. PubMed ID: 25909443
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane.
    Hackstadt T; Rockey DD; Heinzen RA; Scidmore MA
    EMBO J; 1996 Mar; 15(5):964-77. PubMed ID: 8605892
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Make It a Sweet Home: Responses of
    Triboulet S; Subtil A
    Microbiol Spectr; 2019 Mar; 7(2):. PubMed ID: 30848236
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Host cell response and distinct gene expression profiles at different stages of Chlamydia trachomatis infection reveals stage-specific biomarkers of infection.
    Dzakah EE; Huang L; Xue Y; Wei S; Wang X; Chen H; Shui J; Kyei F; Rashid F; Zheng H; Yang B; Tang S
    BMC Microbiol; 2021 Jan; 21(1):3. PubMed ID: 33397284
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sphingolipid trafficking and purification in Chlamydia trachomatis-infected cells.
    Moore ER
    Curr Protoc Microbiol; 2012 Nov; Chapter 11():Unit 11A.2.. PubMed ID: 23184593
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transposon Mutagenesis in Chlamydia trachomatis Identifies CT339 as a ComEC Homolog Important for DNA Uptake and Lateral Gene Transfer.
    LaBrie SD; Dimond ZE; Harrison KS; Baid S; Wickstrum J; Suchland RJ; Hefty PS
    mBio; 2019 Aug; 10(4):. PubMed ID: 31387908
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Loss of Expression of a Single Type 3 Effector (CT622) Strongly Reduces
    Cossé MM; Barta ML; Fisher DJ; Oesterlin LK; Niragire B; Perrinet S; Millot GA; Hefty PS; Subtil A
    Front Cell Infect Microbiol; 2018; 8():145. PubMed ID: 29868501
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fluorescent labeling reliably identifies Chlamydia trachomatis in living human endometrial cells and rapidly and accurately quantifies chlamydial inclusion forming units.
    Vicetti Miguel RD; Henschel KJ; Dueñas Lopez FC; Quispe Calla NE; Cherpes TL
    J Microbiol Methods; 2015 Dec; 119():79-82. PubMed ID: 26453947
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The late endocytic Rab39a GTPase regulates the interaction between multivesicular bodies and chlamydial inclusions.
    Gambarte Tudela J; Capmany A; Romao M; Quintero C; Miserey-Lenkei S; Raposo G; Goud B; Damiani MT
    J Cell Sci; 2015 Aug; 128(16):3068-81. PubMed ID: 26163492
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Host cell phospholipids are trafficked to and then modified by Chlamydia trachomatis.
    Wylie JL; Hatch GM; McClarty G
    J Bacteriol; 1997 Dec; 179(23):7233-42. PubMed ID: 9393685
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Host nectin-1 is required for efficient Chlamydia trachomatis serovar E development.
    Hall JV; Sun J; Slade J; Kintner J; Bambino M; Whittimore J; Schoborg RV
    Front Cell Infect Microbiol; 2014; 4():158. PubMed ID: 25414835
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sphingolipids and glycoproteins are differentially trafficked to the Chlamydia trachomatis inclusion.
    Scidmore MA; Fischer ER; Hackstadt T
    J Cell Biol; 1996 Jul; 134(2):363-74. PubMed ID: 8707822
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Chlamydia trachomatis Ctad1 invasin exploits the human integrin β1 receptor for host cell entry.
    Stallmann S; Hegemann JH
    Cell Microbiol; 2016 May; 18(5):761-75. PubMed ID: 26597572
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of the Growth of
    Nogueira AT; Braun KM; Carabeo RA
    Front Cell Infect Microbiol; 2017; 7():438. PubMed ID: 29067282
    [No Abstract]   [Full Text] [Related]  

  • 39. Chlamydia trachomatis ChxR is a transcriptional regulator of virulence factors that function in in vivo host-pathogen interactions.
    Yang C; Kari L; Sturdevant GL; Song L; Patton MJ; Couch CE; Ilgenfritz JM; Southern TR; Whitmire WM; Briones M; Bonner C; Grant C; Hu P; McClarty G; Caldwell HD
    Pathog Dis; 2017 Apr; 75(3):. PubMed ID: 28369275
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Broad recruitment of mGBP family members to Chlamydia trachomatis inclusions.
    Lindenberg V; Mölleken K; Kravets E; Stallmann S; Hegemann JH; Degrandi D; Pfeffer K
    PLoS One; 2017; 12(9):e0185273. PubMed ID: 28945814
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.